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Introduction

P The need to pursue questions of causality and causal inference with
nonexperimental data —— that is, data based on naturally occurring events —- ‘J
has been recognized for some time in disciplines such as biometrics,

econometrics, and sociology (cf. Blalock, 1971; Duncan, 1975; Goldberger &

Duncan, 1973; Heise, 1975; Johnston, 1972; Jdreskog, 1970; Namboodiri, Carter,

& Blalock, 1975; Wright, 1934, 1960). More importantly, a family of empirical

—r—

procedures designed to evaluate the utility of causal hypotheses and to

: support inferences regarding causality among naturally occurring events is

% gaining rapid exposure in psychology (cf. Bentler, 1980; Bentler & Bonett,

¢ 1980; Bentler & Weeks, 1980; Cook & Campbell, 1979; James & Singh, 1978;
Joreskog, 1978;‘ Joreskog & Sorbom, 1979; Kenny, 1979; Maruyama & McGarvey,

' 1980; Werts & Linn, 1970). The term "confirmatory analysis" is used here to
refer to this family of procedures, which includes confirmatory factor
analysis, linear structural relations, path analysis, structural equations,
and time series. The term "confirmatory” denotes that these procedures are
designed t evaluate the utility of causal hypotheses by testing the fit

b between a theoretical model and empirical data. If a theoretical model is

shown to have a "good fit"™ with the data, then the model is regarded as

confirmed. Conversely, a theoretical model is disconfirmed if it has a "poor
fit" with the data.

Confirmatory analysis is likely to assume an important place in the
repertoire of psychological research methods. Bentler (1980, p. 420), for

example, described linear structural equation models with latent (i.e.,

unmeasured) variables as having "...the greatest promise for furthering
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psychological science.” Another example is provided by the current editor of

Psychometrika (Cliff, 1980) who stated, "The development of the rigorous and

generalized methods for testing hypotheses concerning underlying structures in
covariance matrices is perhaps the most important and influential statistical
revolution to have occurred in the social sciences.”™ However, there have also
been words of caution about the strong emphasis in the literature on the
statistical methods of confirmatory analysis and the comparatively weak
emphasis on the assumptions that justify the use of these methods. To
illustrate, Cliff (1980) went on to say that while the methods may be "...a
great boon to social science research, ...there is some danger that they may
instead have been a disaster, a disaster because they seem to encourage us to
suspend our normal critical faculties.” Billings and Wroten (1978) and James
(1980) were less equivocal, noting that failure to pay attention to potential
unmeasured causes in path analytic models has resulted in biased estimates of
path coefficients and erroneous causal inferences.

There is a serious need to specify the conditions that justify the
application of confirmatory analysis and the use of the results of
confirmatory analysis to support causal inference. OQur objective is to
specify and to discuss these conditions. To meet this objective, we will show
how these conditions follow from a number of fundamental philosophical
assumptions about the nature of causality and about how causes may be known.
We will begin our discussion in Section 1 with an overview of the
philosophical issues surrounding the idea of causation. This section is
designed to help the reader who is not familiar with these issues see how
philosophical questions about causation must be settled before one proceeds to

develop a methodolgy for dealing with causation in the behavioral and social
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sciences. In this discussion we will state where we stand philosophically on
these issues, recognizing that the topic of causality is still one of the most
controversial in the philosophy of science. We will also introduce an
interpretation of causality that we feel corresponds to the intuitive use of
the concept by scientists (Simon, 1977), and then use this interpretation to
establish a rationale for testing the utility of causal hypotheses by
confirmatory analysis.

The rationale for testing the utility of causal hypotheses by
confirmatory analysis will be developed in greater detail in Section 2 by
overviewing ten conditions which, if reasonably satisfied, justify
confirmatory analysis. The role of confirmatory analysis in causal inference
will be addressed in Section 3, where we will discuss the advantages and
disadvantages of confirmatory analysis in the context of the equivocality of
causal inference. Finally, Section 4 will be devoted to an overview of latent
variable models, which are models designed to evaluate the utility of causal
hypotheses among theoretical constructs. As discussed in greater detail
later, "latent variables" are abstractions or theoretical constructs that are
not amenable to direct measurement (e.g., common factors).

The presentation is relatively nontechnical inasmuch as our goal is to
discuss logic and assumptions. Nevertheless, confirmatory analysis cannot be
addressed independently of methodology. Those desiring more comprehensive
treatments of methods are referred to the references cited throughout the
paper. Finally, although this presentation of confirmatory analysis is
limited to causal inference with naturally occurring events, we also affirm

that the logic and procedures extend to experimental data (cf. Kenny, 1979;

Miller, 1971).
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1. AN INTERPRETATION OF CAUSALITY

Causality is a complex topic, beset by controversy because of
metaphysical and epistemological differences among philosophers of
science. Nevertheless, we believe that an understanding of causality is
helpful for understanding the conditions that justify confirmatory
analysis and the use of the results of confirmatory analysis to support
causal inference. It is not our aim to explore exhaustively the theories
by which we come to know things or to delve deeply into the metaphysical
aspects of causation, however important these may be to a full
understanding of causality. Rather, we wish to develop an understanding
of causality that is compatible with the methodological treatment of
causality in scientific inquiry.

Causal ity and Necessary Connection

When we seek to understand an event or an object, what we often want
to know is what caused or determined it. Thus, at first view, causality
seems to involve establishing a necessary connection in the form of an
event A being necessary for the occurrence of an event B. But we
shall argue that causal relations are not necessary relations. Further,
our acceptance of a causal relation must be tentative, because there is no
logical guarantee that the relation will be supported by further
exper ience.

The perspective that causal relations are necessary relations is
exemplified by the philosophical realist who believes in the independent
ex istence of a world beyond the senses. Causation, for the philosophical

real ist, concerns the manner in which objects are able to effect change in
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other objects by means of various forces and powers. The realist wishes

to discover these forces and to show why objects necessarily produce the
effects that they do. This is not, however, a sufficient account of
causation for the psychologically minded who wonder how it is that we know
about the world and the causes that objects in the world exert on other
objects. How do external objects cause humans to perceive not just the
objects, but the causal forces they exert on one another? From what
information does the human organism construct internal representations of
external objects and causal forces?

We know that information about the world comes to the senses in the
form of physical energy. Furthermore, information about causes appears to
reside in the temporal sequence of stimulus information. For example,
people report that they perceive events causing other events as they watch
a film. But all the information presented in the film is varying
intensities of light and shadow, arranged spatially in images that are
presented rapidly in a sequence. People do not report that they perceive
events causing other events when the film's image frames are presented in
random order. The perception of causation depends on the order in which
the information is presented and cannot be found in the individual
elements of information.

The British empiricists of the 18th and 19th centuries, reflecting on
the problem of causation, reached a similar conclusion. David Hume
(1977/1748) argued that the only thing he could find in experience to
account for the idea of a causal connection between phenomenal events was

an awareness of the repetition of similar instances in which an object of

one kind is invariably followed by an object of another kind. Nothing
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within the objects themselves connect them. Only the repeated pairing of
objects gives rise to the idea of a causal relation between objects.

"This connexion," Hume wrote, "which we feel in the mind, this customary
transition of the imagination from one object to its usual attendant, is
the sentiment or impression from which we form the idea of power or
necessary connexion. Nothing farther is in the case" (Hume, 1977/1948, p.
50).

Hume particularly ruled out any logical necessity, in the form an
event A being necessary for the occurrence of an event B, because logical
necessity would allow for neither exceptions nor contradictions, such as
the occurrence of an event B without the occurrence of an event A. He
argued that in considering connections between objects, it is possible
that in the future we will experience the connection between objects
differently than we have in the past. For a considerable time after Hume,
empiricism discounted any role for logical necessity in considerations of
matters of fact. The empiricists' rejection of logical necessity led them
to avoid deduction from general theories and to stress induction and
description.

Modern empiricism, however, restored logic to respectability in
science when it came to explanation using hypothetical formal models
designed to represent relations between objects of experience. Logic
entered in when one deduced the occurrence of specific events from general
laws established inductively in prior experience. To illustrate, Hemphill
and Oppenheim (1948) offered the following schema for the process of
explanation: Let E be an event to be explained, described in

observational terms. Let 91' gz, ceey gk be a set of antecedent
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conditions. Let 1.._1, 1.._2, ey be general laws. Then, if from

-L‘P_
the inductively generated antecedent conditions and the general laws one
is able to deduce the event E to be explained, these antecedent

conditions are the explanation of E. The "logical necessity" that
oconnects the antecedent conditions and general laws 1is not absolute for
these empiricists., Rather, this "logical necessity" is relative to the
hypothetical logical system in which one assumes that the antecedent
conditions and general laws are valid premises. Furthermore, there can be
no absolute necessity for such logically deduced explanations to be always
correct, for further experience may show the premises on which they are
based to be false.

In general, inductively based theories and explanations——-that is,
generalizations from the past to the present or future——cannot escape the
tentativeness of inductive inferences. As Hume observed, there are no
logically necessary connections in experience. Whether the necessary
connections of causal relations are established by repeatedly observing
invariant successions of an event A followed by an event B, or are
deduced logically from inductively established premises, it is not
necessary that one will continue to observe such regular successions or to
find the empirically induced premises of a deductive argument to be true.

Hume even came to question whether the process of induction, of
generalizing from the past to the present or the future, was rationally
justifiable. This was particularly disturbing to him because he saw that
people used inductive reasoning all the time in their everyday affairs. But
he could conceive of no rational argument that could stand up to the logical

possibility that events could turn out to be quite different from what was
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inductively expected. Numerous philosophers after Hume have similarly been
unable to find rational arguments to justify the use of induction.

Nevertheless, some philosophers seem willing to live with the
unjustifiability of expectations based on past experience. Feigl (1963)
regarded the idea that past experience is a guide to what will happen in
the present and the future as an essential but rationally unjustifiable
premise that one had to make to deal rationally with experience. Cook and
Campbell (1979) regarded inductive, cause-inferring behavior as
characteristic behavior of our species and suggested that such behavior
evolved because it had survival value. Other philosophers have not been
so kind in dealing with Hume's skepticism. Wittgenstein regarded Hume's
skepticism aboué induction as "unintelligible", on a par with asking
someone to justify breathing or walking (cf. Dilman, 1973)., Capaldi
(1969) detected a subtle circularity in Hume's skeptical argument, namely
that Hume must rely on instances in past experience of unfulfilled
expectations to support his argument that past experience cannot be relied
upon always to fulfill our expectations. But if past experience cannot be
relied upon, how can Hume rely upon it to prove that it cannot be relied
upon? Thus he presumed the very thing he sought to undermine.

In sum, causal relations are not necessary relations. Wwhile a causal
relation may be deduced logically from prior theoretical assumptions or based
inductively on an observation of a regularity in experience, there is no
logical guarantee that the relation will occur similarly in future experience.
Thus, our use of causal relations must be tentative. Furthermore, if we do
use causal relations as explanations or as guides for action, we do so without

any rational justification for why this practice occurs. It is basically a
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fundamental human practice.

The Form of a Causal Relation

Some philosophers conceptualize causal relations as following the form

of logical implication. These forms are reviewed briefly below. We will
then argue that causal relations need not, and perhaps should not, be con-
ceptualized as following the form of logical implication. Rather, we will
argue that causal relations follow the form of an asymmetric functional
relation in a self-contained system.

In regard to logical implication, causal relations have often been
viewed as taking one of the following three interrelated forms (Byerly,
1973): (1) sufficient condition: An event A is causally sufficient
for an effect B if B occurs vhenever A occurs. (2) Necessary
condition: An event A is causally necessary for an effect B if B

never occurs without A having already occurred. (3) Necessary and

Sufficient condition: An event A is a necessary and sufficient

condition for an effect B if B never occurs when A has not occurred
and B always occurs when A has occurred.

Treating causation as having one of the forms of logical implication
leads to conclusions which are incompatible with the common language
conceptions of causation. For example, the statement, "If A, then B"
logically implies "If not B, then not A." But, if the causal relation
follows the form of logical implication, this would mean "A causes B"
implies "not B causes not A", which makes no sense. To use a concrete
example, if the causal relation follows the form of logical implication,
then the statement, "John's pressing the accelerator pedal causes the car

to accelerate" implies "The car's not accelerating causes John not to
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press the accelerator pedal." Not only does this sound absurd, but also
it points out the need for an approach to causality that "corresponds to
the intuitive use of that term in scientific discussion" (Simon, 1977, p.
7).

Simon (1952, 1953, 1966, 1977) argued that, formally speaking, the
form of the causal relation does not take the form of logical
implication. Rather the causal relation takes the form of an asymmetric

functional relation in a self-contained or closed system. These

points are illustrated in Figure 1.1, which concerns the functional
relation between an effect Y and a cause X. As shown at the top of
Figure 1.1, there are 12 scores on each variable. The variable X has
six possible values (i.e., 1,...,6), and the variable Y has three
possible values (i.e., 1,2,3). Each separate occurrence of an X or a
Y is an event. Thus, this example has 24 events. Each value of X

and Y defines a class of events. For example, X = 5 defines a class

of events with the common value of 5, and there are two events in the X
= 5 class. The variable X is comprised of a set of classes of events.

The term set refers to the six classes of events associated with the six

possible values that may be assumed by X. The set of classes of events

for Y encompasses the three values that may be assumed by Y.

Insert Figure 1.1 about here

Simon (e.g., 1977, p. 108) viewed a causal relation as a function of

an effect (Y) on to one or more causes (Xs). In this example, we have
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one cause, and the functional relation takes the form ¥ = £(X). It is
particularly important to note that the causal relation between X and
Y is a relation determined over the full range of values on X and Y.

It is not merely a relation between the occurrence of two events (e.g.,
X =1, ¥Y=1), or a relation between the occurrence of two classes of
events (e.g., X =6, 6; Y =3, 3). Let us now address what is meant
by self-contained and asymmetric.

The function Y = f(X) is self-contained because one and only

one value (class of events) of Y is associated with each value (class of
events) of X. This implies that the values of Y are determined
completely by the values of X; that is, given knowledge that X has
occurred and the values of X, we can determine exactly the values of

Y. The function is asymmetric because it is impossible to reverse the
direction of causation [i.e., X = £(¥)] and maintain unique
determination. For example, Y = 1 is associated with X =1, 3, or §5,
which means that X cannot be uniquely determined by the knowledge of the
values of Y.

In more general terms, Simon considered that causal relations in
science usually concern quantitative functional relationships, such as
the amount of wheat grown is a function of the amount of rain and the
amount of fertilizer. In the simple case where an effect (y) is
determined by two causes (_)51 and _)52), the functional relation is
denoted by y = (5_1, 1(_2), ;here lgwer case letters refer to
variables in deviat;on ;ore form. This means that the occurrence of the
effect Y is dependent on the occurrence of the causes X, and X,

in the manner prescribed by the function £. The function f may take

e e e e,
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many forms. For simplicity's sake, the treatments in this paper are
generally predicated on linear functions. Thus, for example, the
functional relation y = 2(51' 52) expressed in linear form denotes

that y is a function of a w;igh:ed, additive combination of the values

of _:5.1_ and 53, namely y = Eﬂf&l + Eﬁziz_ When

expressed as equations, functional relations are referred to as

functional equations.

A functional equation implies that the system is self-contained, which
is to say that the values of the effect y are determined completely by the
function that relates the values of the causes x, and X, to y. For

example, the (linear) functional equation y = gﬁlll + gﬁzig

represents a self-contained or closed system in which values of y are
completely determined by the weighted, additive combination of the values of
X and X5 The asymmetry of causation may at times be illustrated as

i; our e;anple above, where y is completely determined by the function
relating y to x; and x,, but no function can be found that, for

example, comple;ely de;ermines the values of X based on a function of y

and X,. However, the asymmetry reflected in a functional equation, in the

context of a causal relation, is typically an imposed asymmetry based on the

presumed order in which variables occur naturally. To illstrate, the

frequency of automobile accidents may be a function of the amount of snowfall,
but it is unlikely that snowfall is a function of the number of automobile
accidents (Darlington, 1968). Thus, the logic of asymmetry of causal
relations is that setting y = f£(x) does not imply that x = f(y).

Causal analysis is generally predicated on a sét: of variables, where

multiple effects are regarded as functions of multiple causes. Each effect is
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represented by a functional equation, and, based on the natural causal
ordering among the variables, a system of functional equations is devised in
which a variable which acts as an effect in one equation is a cause in an
equation later in the causal order. For example, a simple system may be
compr ised by two linear equations, such as x_l_ = 9115152 and X_Z.

= EX 2Y_1¥'l' where the natural causal ordering is 5_1:,' iy and

then_x;. The y, and y, equations may be regarded as

self-o;ntained ;ubsEt;ns within the system of equations, Furthermore, if
each of the functional equations embedded in the system of equations is
self-contained, then the system is self-contained, which connotes that there

are as many equations as effects to be determined. As we shall see later,

self-containment of a system of equations suggests that parameter

b ) in functional equations have a unique value and
41X -g
may be estimated. We shall also see how these estimates are used to infer the

valwes (e.q.,

strengths of causal relations.

In summary, what Simon's functional relation conception of causality
suggests is that we infer the presence of causal relations when we isolate
groups of variables into self-contained systems of functional equations in
which the varying values of some variables (causes) appear to determine
totally the varying values of other variables (effects). Within these
self-contained systems, the causal pathways among variables are determined by
the manner in which the values c;f certain effects in self-contained
subsystems (functional equations) are themselves determined
by the values of causes, which include effects of other self-contained

subsystems lower in the causal order. The inference of causation is an

inductive inference based on presuming that the functional equations/relations
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describing the causal connections between the values of causal variables and

effect variables observed in the past will continue to hold in the future.

Is Causality Replaced by Functional Relation?

A number of empiricist and positivist writers (e.g., Pearson,
1892/1911; Schlick, 1949; Jeffreys, 1948), have expressed the view, echoed i
by some psychologists (cf. Travers, 1981), that causality as a concept has 1
been cast out of science and replaced by the concept of functional i
relationship or by the even less binding connection of contingency. How
does this view contrast with Simon's (1952) view of the causal relation as
an asymmetric, functional relation?

To begin with, Simon's view does not attempt to settle any

metaphysical issues regarding the nature of causality by asserting that

causal relations are to be represented formally by functional relations.

Simon's view is thus ecumenical in that it seeks to provide a common basis
on which scientists of different metaphysical pursuasions may agree when

dealing with the practical problems of demonstrating causality. These

other empiricists, however, have metaphysical commitments when they seek to
equate causality with nothing but functional relations, that is to say,
mathematical descriptions and sumnaries of regularities observed in
experience. For them the real is only what is known in experience. But
because the phenomenalist psychology of empiricism holds that the elements
of experience are logically unconnected, this rules out necessary
connections in experience. Since, traditionally, causality concerns
necessary connections, causality no longer is a viable concept for
empiricists. Causality must be replaced by the weaker relation of

functional relation, which serves only *: describe the regularities of
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succession of similar kinds of events in experience, these regularities
being products of the mind's associative processes,

More important, however, is that those positivists and empiricsts
rejecting causality in favor of functional relationships have often
stressed the interdeperndence of variables and even the reversibility or
symmetry of relationships (cf. Bunge, 1959). Much of this thinking can be
traced to the writings of the physicist Ernst Mach, who had a profound
influence on Pearson (1892/1911) and subsequently on the adherents of the
Vienna Circle of logical positivists, which included Schlick (1949) cited
above. According to Bunge (1959, p. 91) Mach "...demanded the replacement
of every sort of connection, particularly causal connections, by functional
relations expressing a symmetrical interdependence." To illustrate this
view, Bradley (1971) reported, Mach would cite how the pressure p of a
given mass of gas is uniquely determined by its absolute temperature T
and volume V, according to the equation pV/T = r (a constant). But
then Mach would caution that none of the quantities p, V, or T should
be thought of as a cause of the other, but rather as functions of each
other. According to Bradley, Mach was motivated to eliminate the notion of
causality (interpreted as a necessary asymmetric connection) and replace it
with the less binding and more descriptive symmetric connection of
functional interdependence. Functional relations were viewed as describing
regular successions of phenomena by summarizing the phenomenal facts.

In contrast, the econometrician and statistician Nicholas
Georgescu-Roegen (1971) pointed out how the many examples of functional
interdependence cited by Mach and the positivists after him come from

Newtonian mechanics. In Newtonian mechanics there is no unique direction
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in which processes can occur. Events can happen in just the reverse order
as we observe them to happen and still be consistent with Newtonian

mechanics. But Newtonian physicists, Georgescu-Roegen claimed, were faced

with a crisis when they attempted to analyze the phenomenon of heat. The
simple law that heat always passes fram hotter to colder bodies is an
asymmetric relationship not derivable from Newtonian physics (except by
invoking an empirically untestable interpretation of probability in what
is known as "statistical mechanics"). Yet this simple law, known as the
Second Law of Thermodynamics, underlies the asymmetry of countless
relationships observed in nature and makes meaningful a conception of
causality as an asymmetric relationship.

Simon's functional relation conception of causality is based on
asymmetry of relationship. While Simon allowed that asymmetry could be
achieved in a definition of the causal relationship by invoking the concept
that causal variables would measure events occurring before events measured
by effect variables, he chose instead to define causal order independent of
time. For him a system of (linear) causal relations would be represented
by a self-contained system of independent and consistent (nonhomogeneous)
linear equations. <Causal ordering in such a system would be indicated by
the order in which one would have to solve for the variables of the system.
We are not yet ready to describe further mathematical details of Simon's
self-contained equations and causal order in such a system. As discussed
later, the equations selected for such a system would be based on
relationships observed in prior experience or those derived from theory.
The important point here is that Simon believed he had distilled what the

scientist, of whatever epistemological persuasion, is concerned with when




he/she seeks to establish causes, which is to establish functional
relations among variables in a self-contained, closed system,

The impact of Simon's perspective is seen in econometrics and sociology,
where methods of confirmatory analysis using structural equations and path
analysis developed partly under Simon's influence. Unfortunately, Simon's
views on causality seem to have been overlooked by many philosophers of
science as well as by authors of popular textbooks on causality in the social
sciences. For example, no references to Simon appear in Cook and Campbell
(1979), Heise (197S), or Kenny (1979), although many treatments in these texts
reflect functional relations. In this paper, we will adopt Simon's view that
the causal relation is a functional relation among sets of classes of events
(i.e., variables) within a self-contained, closed system.

We must make one final observation concerning the metaphysical status
of the functional relation conception of causality we will use in this
paper. We do not claim to exhaust the idea of causality with such a
concept. Actually, we are only interested in formulating éonditions under
which causal relationships may become known, not in stating what causality
is. It is the phenomenalist empiricists who wish to make the
metaphysical claim that causality as a functional relation merely
summar izes regularities of succession in phenomenal experience, which for
them is all there is to reality. We will make no such claims, since they
are rot relevant to our task in this paper.

Functional Relations in Psychology

Theory plays a major role in the formulation of functional relations
in psychological research. The functional relation view of causality

suggests that in order to infer causal relations we must isolate groups of
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variables into self-contained systems in which the varyng values of effects
appear to be determined totally by functions of values of causes. However,
because the number of possible causal relations among psychological
variables is infinite, it is necessary to rely on theory to identify the
variables to be isolated and included in functional equations in a
sel f-containedsystem. Not all psychological theories furnish a meaningful
basis for accomplishing this chore, and we will devote considerable space
in the next section of this paper to the conditions which must be
reasonably satisfied if a theory is to be relied on to develop functional
equations in a self-contained system. We preface this discussion with
interpretations of functional relations and self-containment in regard to
their use in psychology and other disciplines in which functional relations
take the form of probabilistic function equations.

Functional relations were represented above in the form of

deterministic functional equations. For example, the linear functional

equation y = X, +B _ x, is deterministic because y is

gﬂl-l ‘ﬁg‘g

completely determined by X and X,. However, in many areas of
psychological research, va;iation—in effects may occur for reasons ot'her
than variation in the causes included explicitly in a functional equation.
For example, variation may occur in an effect because of variation in
causes not included explicitly in an equation. These causes may have
minor, independent, and unstable influences on an effect, in which case

they are referred to as random shocks. The likelihood of the occurrence

of random shocks in psychological research suggests that it is usually

necessary to think of functional relations and functional equations in

probabilistic terms rather than in deterministic terms.
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When expressed in probabilistic terms, causal models involving linear
| functional relations take the form Yy = 5(51,52,9), and a linear

functional equation has the form y = éii ¥ +B_ x, +d.

172 X
"Linear" is emphasized because we focus on linear forms of probabilistic

functional equations in this discussion. These forms differ from linear

deterministic functional equations because probabilistic equations include a

disturbance term, designated by "d". The disturbance term is a surrogate !

that represents all causes of y not included explicitly in the (linear)

probabilistic functional equation. That is, X and X, are the

explicitly included causes and d represents all other causes of y.
Disturbance terms almost always include random shocks, which, as defined
above, are causes of y that are minor, independent, and unstable.
Disturbance terms may also include two other types of causes that are

important at this time, namely relevant causes and nonrelevant causes.

A relevant cause is defined as a variable that:

(a) has a nomminor, direct influence on an effect,

(b) is stable,
i (c) is related to at least one other cause included explicitly
in a functional equation, and

(d) makes a unique contribution to a functional equation, which
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means that it is not linearly dependent on causes already

included in a functional equation (cf. James, 1980).
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A nonrelevant cause is a variable that satisfies conditions (a), (b), and

(d) above. It is not, however, related to one of the causes included




explicitly in a functional equation.

The distinctions among random shocks, relevant causes, and nonrelevant
causes furnish a basis for ascertaining whether or not a probabilistic
functional equation is self-contained. We will formally define
self-containment for probabilistic functional equations, and then show how
this formal criterion can be restated in terms of random shocks, relevant
causes, and nonrelevant causes.

Like deterministic equations, probabilistic equations must be
self-contained before they can be used to represent functional (causal)
relations. However, unlike deterministic functional equations, it is not
possible to require that the realized (measured) values of causes determine
the values of an effect in probabilistic functional equations, if for no other
reason than that the values of effects will include the influences of
unstable, and therefore unmeasureable, random shocks. It is possible
to define self-containment for probabilistic functional equations in
reference to the expected values on an effect, conditional on the values of
causes included explicitly in a functional equation [i.e., the (conditional)
probability distribution of the effect]. Specifically, a probabilistic
functional equation is self-contained if the realized values of causes
included explicitly in the equation determine the (conditional) probability
distribution of the effect variable (Simon, 1977),

For example, the linear probabilistic functional equation:

=B x, +B + d (1.1)
L7535 P o % T S
is self-contained if the conditional expected values of Y. given realized
values of X and x _2, are provided by + EZE 53.

B
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The conditional equation is indicated by:
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E(y|x,,X,) =B __ x, +B X
e R L R )
where E is the expectation operator.

E tion 1.2 requires that solutions exist for B and B
dua E Sy, @9 S,

which combined with the realized values of x; and x,, determine the

conditional expected values of y. As shown in the next section of this
report (Condition S), unbiased solutions exist for B and B

! g &3] X%,
only if x; and x, are unrelated to d. This, in turn, Connotes that

a probabilistic functional equation will be self-contained if, and only if,

the cases represented explicitly in an equation are unrelated to the

disturbance term of that equation. That is, Eq. 1.2 is dependent on the lack

of relationship between d and both x; and x, in Eq. 1l.1. Thus, a
more fundamental definition of self-;ontaim;ent of a probabilistic functional
equation is that explicitly measured cases are unrelated to the disturbance
term of the equation.

We are now ready to return to the relationship between self-containment
and random shocks, relevant causes, and nonrelevant cases. If the disturbance
term is comprised by random shocks exclusively, then d in Eq. 1.1 cannot be

related to the explicitly measured cases X and X5 because, by

definition, random shocks are unrelated to—all ot;er variables. Similarly, if
d includes nonrelevant causes,in addition to random shocks, then again 4

is unrelated to .3 and X, because, by definition, nonrelevant causes

are unrelated to ;xplicizly included (i.e., measured) causes. Thus, we may
conclude that (a) if the 4 term in a probabilistic functional equation
involves only random shocks and nonrelevant causes, then (b) it is
self-contained because explicitly measured causes will be unrelated to d.

However, if d contains at least one relevant cause, then d will be
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related to at least one explicitly measured cause. That is, a relevant cause
of y that is not included explicitly in the probabilistic functional
equation for y will be included in the disturbance term. By definition,

this unmeasured relevant cause is related to at least one explicitly

measured cause [see (c) in definition of relevant cause], from which it

1

follows that either x, or X,y OF both, will be related to d in Eq.
l.1. Consequently, Eq. 1.2 is not applicable because unbiased solutions do
not exist for B and B and the probabilistic tion given
Syx, 1 Sy’ P squation 9
by Eg. 1.1 is not self-contained. On the other hand, if x;, and x,
are the only relevant causes of y, then Eq. 1.1 would be self-contained.

This suggests that the most fundamental definition of self-containment for a

linear probabilistic functional equation is that all relevant causes of an

effect are included explicitly in the equation.

Functional equations are assumed to be in linear probabilistic form
throughout the remainder of this paper. We will emphasize, many times, the
points that (a) a probabilistic functional equation can be used to represent a
causal relation only in the condition that the equation is self-contained, and
(b) a probabilistic functional equation will be self-contained only in the
condition that all relevant causes of the effect are included explicitly in
the equation. We will also demonstrate that, in naturalistic studies, it is
necessary to rely on theory to identify relevant causes that should be
included in a probabilistic functional equation, and frequently, to build a
case that causes not included explicitly in an equation are unrelated (or
linearly dependent on) causes represented explicitly in that equation.

Summary

The following ideas were developed in Section 1. Causal relations are




23

inductive relations, and take the form of asymmetric functional relations
among certain variables, or subsets of variables, in a self-contained
structure (Simon, 1977). It is not assumed that causal relations are
logically necessary relations or that causal relations take the form of
logical implication. It is assumed that theory plays a major role in the
formulation of functional relations in psychological research, where
functional relations are typically represented by probabilistic, rather than
deterministic, equations. The probabilistic equations must be self-contained
if they are to represent causal relations.

We have adopted Simon's functional relation perspective of causality in
this text. We have also placed major emphasis on the role played by theory in
the formulation of functional relations in psychological research. As we
shall demonstrate, theory is used to isolate groups of variables into a system
of functional equations., It is also used (a) to identify relevant causes that
should be included in a functional equation, (b) to build a case that causes
not included in a functional equation are not relevant causes, and (c) to
specify the causal ordering of equations or subsystems within a system of
equations. Finally, we will illustrate the intrinsic interplay between theory
and data in the conduct of a confirmatory analysis.

2. CONDITIONS FOR CONFIRMATORY ANALYSIS AND CAUSAL INFERENCE

The objective of this section is to describe the conditions which justify
the use of confirmatory analysis to evaluate whether the causal hypotheses
indicated by functional relations have scientific utility. Ten conditions are
introduced and discussed. The first seven conditions pertain to the
appropriateness of a theoretical model for confirmatory analysis and causal

inference. Reasonable satisfaction of these conditions suggests a
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well-developed, stable theoretical model in which self-contained
(probabilistic) functional equations specify hypothesized causal relations
among causes and effects. These conditions are: (1) formal statement of
theory in terms of a structural model, (2) theoretical rationale for causal
hypotheses, (3) specification of causal order, (4) specification of causal
direction, (5) self-contained functional equations, (6) specification of
boundaries, and (7) stability of the structural model.

The final three conditions concern the operational aspects of
confirmatory analysis in a population or sample. The conditions are: (8)
operational ization of variables, (9) empirical confirmation of predictions I:
f empirical support for functional equations; and (10) empirical confirmation of
predictions II: fit between structural (i.e., theoretical) model and
3 empirical data. The presentation of Conditions 8 through 10 focuses on
E var iables associated with directly observable events, which are referred to as
"manifest variables". As noted earlier, an overview of the latent variable
r form of analysis is presented separ=tely in Section 4. Finally, while
I reasonable satisfaction of the 10 conditions to be described here is required

for causal inference, we emphasize their role in confirmatory analysis in this

section and their role in causal inference in Section 3.

Conditions Pertaining to Appropriateness

of Theoretical Models

Condition 1: Formal Statement of Theory in Terms of a Structural Model

Any attempt to explain the occurrence of natural events in terms of
functional relations must begin with a well-developed theory. By the term
"theory” we mean a set (or sets) of interrelated causal hypotheses which

attempt to explain the occurrence of phenomena - physical, biological, social,
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cultural, or psychological (Singh, 1975). The basic components of a theory,
or a theoretical model, are as follows (cf. Dubin, 1976; Merton, 1968;
Singh, 1975):

(1) Phenomena, or the variables that act as causes and effects.

(2) Causal connections among the variables. A causal connection

refers to the hypothesized causal association between one cause and one effect
(e.g., X; > y;). The total pattern or structure of causal connections

among orgered—variables, where order reflects the natural sequence of
occurrences of events represented by variables, is the essence of a
theoretical model. It is this structure of causal connections that provides
the basis for the development of functional relations and functional
equations, which relate eaéh effect to all of its presumed causes.
Consequently, the structure of causal connections should specify the specific
variables that are to be related functionally, the causal ordering among the
variables, the direction of causation for each causal connection
(unidirectional or rgciprocal) , and the function that relates each effect
variable to all of its relevant causal variables. The last point implies that
the structure of causal connections, or the system of functional

equations, should be self-contained.

(3} A theoretical rationale for each causal hypothesis (causal

connection) that describes the processes through which a cause acts on
(operates on, produces) an effect.

(4) Boundaries, which specify the contexts (e.g., types of subjects
and sitvations) within which the functional relations/equations are expected
to hold.

(5) Stability, which implies that the hypothesized structure of causal
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connections will be consistent over specified time intervals. Inasmuch as the

structure of causal connections is represented by a system of functional
equations, stability suggests that the functional equations will be invariant
over specified time intervals.

In its initial development, a theory is based typically on induction,
wherein observations of events lead to hypotheses that certain variables are
related causally and that certain processes or functions generate the
relations. In this regard, previous experience will often sixygest to the
theory builder the form that functional relations might take. Additional

theoretical work is often needed, however, to develop the theory so that it is

amenable to confirmatory analysis. This development includes consideration of
the form of the theory with respect to (a) its breadth or elaborateness; (b)
its depth, which is reflected by the complexity of variables and the molarity
of causal hypotheses; and (c) the structure of causal connections, which is
typically stated in the form of a structural model. Each of these
considerations is discussed below. We will then proceed to discussions of the
other aspects of a theory.

Form of a Theory - Elaborateness

A theory may be very simple and involve just one effect and the cause(s)
that is (are) presumed to be functionally related to that effect. For
example, one might hypothesize that increases in role expectations,
communicated by management to subordinates regarding quality and quantity of

subordinates' performance, may cause subordinates to perceive that they have
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too much work to do (i.e., are overloaded--cf. James & Sells, 198l1). This is

a "nonelaborate theory", consisting of just one effect (role overload) and two

causes (expected quality of role performance and expected quantity of role
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performance) . Nonelaborate theories are acceptable from the perspective of
confirmatory analysis if the model is self-contained, which is to say that all
relevant causes of role overload are contained in the theoretical model (i.e.,
the model is self-contained).

A theory may be made more elaborate by adding effects, and as necessary,
other relevant causes of those effects. For example, perceptions of role
overload may be thought to cause state anxiety, defined as "subjective,
consciously perceived feelings of tension, apprehension, (and] nervousness,
accompanied by or associated with activation of the autonomic nervous system
(ANS) " (Spielberger, 1977, p. 176). The guiding rule is that one should
include all relevant causes of each effect in the theoretical model. In this
example, if no other causal variables are added to the model, then the theory
builder is assuming that role overload is the only relevant cause of state
anxiety.

Finally, one can develop highly elaborate theories. To pursue the
present illustration, role expectations, role overload, and anxiety might be
viewed as a subsystem of a more general system, and one might propose both
direct and indirect causes of expected quantity and quality of work (e.g.,
increases in demand for product), as well as direct and indirect influences of
anxiety on other psychological phenomena, such as performance and withdrawal
behaviors. The rule remains; each time the theory builder enters an effect
into the theoretical model, he or she must also enter all relevant causes of
that effect.

In later discussion it will be argued that the more elaborate the theory,
the more "faith" one may have in the results of a confirmatory analysis.

Nevertheless, confirmatory analysis may be applied to nonelaborate or
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"moderately” elaborate theories insofar as the theories are self-contained.
It must be recognized, however, that nonelaborate and moderately elaborate
theories are typically subsystems chosen from more global theoretical
subsystems or systems. While acceptable, such selection obviously limits the
explanatory value of the chosen theory because the functioning of a specific
subsystem depends on the functioning of more general sybsystems and systems.
For example, expected quality and quantity of role performance may be the
only relevant causes of role overload, but this self-contained model will be

influenced by the causes of expected quality and quantity of role performance.

Form of a Theory - Molar Causal Connections and Mediating Mechanisms

In addition to elaborateness or breadth of a theory, it is also
possible to view a theory in terms of its depth by assessing the
"complexity” of variables and "molarity" of causal connections included in
functional relations. To contrast extremes, molar "refers to causal laws
stated in terms of large and often complex objects", whereas micro, or

micromediation, “"refers to the specification of causal connections at a

level of smaller particles that make up the molar objects on a finer time
scale" (Cook & Campbell, 1979, p. 32). To illustate, a causal hypothesis
that perceived role overload will result in state anxiety implies a molar
causal connection between two complex variables. A more specific
micromediational model, or "micromediational chain", is presented in later
discussions of theoretical rationale for causal hypotheses (Condition 2),
where it is postulated that perceived role overload produces state anxiety

by a model such as: role overload + anticipated failure+ anticipated

negative consequences of failure (e.g., reprimand) + state anxiety.
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As discussed by Cook and Campbell (1979), it is not only acceptable
but often necessary to employ theoretical models involving molar causal
connections among complex variables. It follows that the more
micromediating variables which serve to connect complex variables will not
be included explicitly as separate variables in the theoretical model,
and therefore, functional relations and equations. It is pocsible,
however, to attempt to identify at least the more important of these
mediating variables, and to propose how these variables enter into the
causal processes. That is, one uses mediating variables to attempt to

explain how one complex variable produces or acts on another

complex variable. Thus, as in the example above, role overload and state
anxiety may be the only variables included in a theoretical model. But
reference may be made to mediating processes, such as anticipated failure
and negative consequences resulting from failure, that lead to associations

between role overload and state anxiety. We shall use the term mediating

mechanism to refer to an intervening or mediating variable that (a) is

not included explicitly in a theoretical model, but (b) is used to help to
explain the processes by which a complex cause produces a complex effect in
a molar causal connection.

Failure of a mediating mechanism to operate as expected for some, but
not all or even most, subjects may be regarded as a relatively random event
and therefore one form of randam shock. Such failures render molar causal
connections, and therefore functional relations and equations, both
fallible and probabilistic (Cook & Campbell, 1979). That is, a cause may

not produce an effect because a mediating mechanism on which the causal

connection depends is not functioning in the presumed manner for some
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subjects. Thus, we might say that a cause will produce an effect dependent
on the occurrence of the presumed mediating mechanisms for all subjects,
which is a probabilistic statement and one of the reasons why functional
equations are represented in the form of probabilistic equations. Finally,
the probabilistic nature of a causal hypothesis is associated logically
with the molarity of the causal connection. Cook and Campbell (1979, p.
33) noted that "...it is probably the case that the more molar the causal
assertion and the longer and more unspecified the assumed micromediational
chain, the more fallible the causal law and the more probabilistic its
supporting evidence."

To avoid potential confusion, it is helpful to distinguish between the
role of mediating mechanisms and relevant causes in functional equations.,
Consider the following functional equation that relates two complex l
variables: y = 'B‘E‘_i +d . If wis a relevant cause of y,

el

then w must be entered into the equation; that is = +
w oe the eq ’ =2 Y ﬁﬂi + Emﬁ

gx. Note that (a) x is still presumed to have a direct effect on

Y. (b) the equation is not self-contained without explicit inclusion of

w, and (c) w may or may not be a complex variable. However, if w is
a mediating mechanism for the function relating y to x, then the model
has the form x + w~ y. This model indicates two functional
equations, namely w = Eﬁi + g‘_’ and y = 'B‘ﬂ! + gz

This suggests that explicit inclusion of w renders the (x,y)
relationship indirect, where the effect of x on y must now pass

through w. Furthermore, X is no longer a relevant cause of y

because, by definition, relevant causes must be directly related to

effects. On the other hand, if w is unmeasured, then relative to the
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molarity of the theory, x is a direct cause of y and the molar
connection may be regarded as self-contained.

In sumary, many theories in psychology are nonelaborate or
moderately elaborate, involving molar causal connectiorslinking a lew
complex variables. Such theories may be quite useful for testing selected,
self-contained causal subsystems. However, more elaborate theories
involving more holistic subsystems or systems, as well as explication and
inclusion of mediating mechanisms in theoretical models, are clearly the
long-term objectives. Nevertheless, regardless of the scope of a
particular theoretical model, if it is self-contained then it is possible
to proceed to the next step in confirmatory analysis, which is the
development of a structural model.

Development of Structural Models

It must be possible to propose a theory in quantitative terms if it is
to be subjected to confirmatory analysis. The process of confirmatory
analysis typically begins by specifying the presumed structure of causal
connections among the variables in the form of a graphic model.

Consider the graphic model of the oversimplified theory regarding
causes and effects of role overload in Figure 2.1. (All variables are
regarded as complex and thus all causal connections are molar.) The model
predicts that (a) expected quality (3:_1) and expected quantity (52)
of role perfofmance are causes of per;eived role overload (xl); —(b)
role overload (y,) is a cause of state anxiety (y,); and (c)_
expected quality-(il) and quantity (52) of role p;rformance do not
cause state anxiety_(xz) directly, raZher they affect it indirectly

through their effects on the intervening role overload perceptions

e N A 0% 3y o
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(xl). Representations of theory or theoretical models are referred to
as causal, or structural, models; the term "structural® is used to denote

that the structure of the causal connections has been specified.

Insert Figure 2.1 about here

Definition of terms. In regard to the structural model, Y; and

Y, are referred to as endogenous variables; an endogenous variable

i; a dependent variable (i.e., effect) whose occurrence is to be explained
by the structural model. X and X, are exogenous variables.

An exogenous variable is a ;redete:mined variable that acts as a cause but
whose occurrence is not to be explained by the model.

The curved (double-headed) arrow between X and X, means that
although the exogenous variables may be relatedj their—.relationship is not
to be explained by this particular structural model. The straight
(single—-headed) arrows in the model represent the hypothesized causal
connections. The lack of straight arrows between the two exogenous
variables (51 and 3:_2) and the endogenous Y5 var iable reflects
the hypothes;s that—the exogenous variable; do not have direct causal
connections with Yo

Associated m:h each straight arrow is a structural parameter

(i.e., . 'The structural parameters assume

B , B : B )
X Thk Y
values that reflect the strengths of the causal relationships.

Specifically, each structural parameter reflects the amount of change
in an effect (endogenous variable) that results from a unit of change

in a cause (exogenous variable or preceding endogencus variable), with
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all other causes of that effect held constant. For example, _BY_ % is a
11
shorthand notation for B , which indicates that x., also a cause
] 1% % =2 i
- i

of y,, is held constant when the effect of x; on y, is ascertained.

Thus, _By-lll is the unique effect of il on xl. A key
objective of confirmatory analysis is to estimate the values of the
structural parameters; this process is addressed in Condition 9.

The small "d’'s" associated with each of the two endogenous variables

are the disturbance terms, Disturbance terms involve variation in an

endogenous variable that is not to be attributed to the causes of that

variable included explicitly in a structural model. For example, d

1
accounts for all variation in y, that cannot be attributed to x, -
and 53. The straight arrow from gxl to x}- suggests that
these other sources of variation are also causes of ¥y- In the
structural model, the sources of variation ind , as well as

1
QX , include random shocks and/or unmeasured or omitted causes, which
2

may or may not be relevant causes. In an actual confirmatory analysis with

realized values on variables, a disturbance term may also include (a)

0 T TR TR T T e T

random measurement errors in the effect and the causes, where the primary

concern is error in one or more of the causes; and (b) nonrandom

measurement errors, such as bias in the scales of measurement and method

variance. Random shocks and unmeasured causes are discussed in greater
detail in Condition 5; random and nonrandom measurement errors are

addressed in Condition 8.

Functional equations. The formal structural model in Figure 2.1

specifies the form of the functional equations that are to be used to

represent the functional relations. There are two endogenous variables in




Figure 2.1, and thus two functional relations, namely xl = 2(51,

52, gl) and XZ = E(Xl' gz). Assuming linearity and
additivity, the functions may be viewed as taking the form of weighted,
additive combinations. Specifically, the functional equations are, in

deviation form:

X, + +d (2.1)
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XZ = EZ— Y +9Y_; (2. 2)

relations that relate effects to causes and specifies the form(s) of the
functional equations that are to be used to represent functional relations.
However, specifying functional relations and equations does not
necessarily mean that the processes by which causes produce effects have
been explained. For this we shall often need a theoretical rationale.

Condition 2: Theoretical Rationale for Causal Hypotheses

Simon (1977) suggested that some functional relations are
self-explanatory in the sense that the processes by which a cause produces
an effect are self-evident. To illustrate, the processes by which
fertilizer and rain act to influence the growth of wheat need not be
explained by additional theory or mediating mechanisms because wheat growth
is generally accepted to be a function of rain and fertilizer (although
type of fertilizer is a relevant question). Darlington (1968) made a
similar point regarding snowfall and increases in automobile accidents.
However, many relations among variables are more subjective, and what may
appear to be a functional relation is instead merely a covariation among
variables that are not causalily related. A classic example used by

philosophers to indicate covariation without causation is the correlation




between the occurrence of night and the occurrence of day. This

covariation is spurious; covariation between night and day is due to common
causes (e.g., the earth's rotation about its axis and the sun). This
example highlights the point that an attempt to specify the processes by
which night causes day, or vice versa, would likely preclude an erroneous
causal hypothesis that night is a function of day.

An attempt must be made to separate nonobvious functional relations
from simple covariation by proposing a theoretical rationale for the
functional relations. Prior experience and observation are helpful in
identifyng covariation among’variables, where the covariation may reflect a
functional relation. The theoretical rationale is typically obtained by
development of a theory from careful observations, or by deducing from
an existing theory a proposal of how causes produce effects; that is, an
explanation of why variables covary. It is also typical that the
theoretical rationale involves the introduction of mediating mechanisms to

help to explain molar causal connections among complex variables.

To illustrate these points, a theoretical rationale is developed
for both the causes of role overload and the role overload + state anxiety
causal connection in Figure 2.1. Beginning with role overload, prior
experience in work enviromments may suggest that management's decision to
increase expectations for quality (51) and quantity (52) of role
performance results in perceptions o; overload (xl) on—the part of

subordinates. While this observation implies a functional relation between

Y and X and Xo it does not necessarily specify how it is that
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qual ity/quantity expectations produce role overload. A theory of "stress"
might serve this purpose (cf. Katz & Kahn, 1978). For example, it might be
postulated that increased expectations for higher quality output in shorter
time spans results in perceived overload because these expectations exceed
both physical and personnel resources (e.g., demands for quality exceed the
tolerances of machinery and the technological training of personnel) as well
as time resources (e.g., the quantity of expected output cannot be achieved in
the existing work-day or work-week). In short, perceived overload occurs when
role prescriptions and demands exceed available resources and time.l

The explanation above assumes the presence and operation of a number of
mediating mechanisms. For example, the presumed causal connection between
increased demands for quality and peirceived overload is a molar causal
connection between two complex variables. This relationship depends on such
things as accurate communication of expectations to subordinates from
management, cognitive comparisons of resources and demands on the part of
subordinates, and assigmment of similar meaning to the enviromment by all or
most subordinates (i.e., all or most subordinates perceive similar levels of
role overload). The molar causal connection may in fact be true, but can only
be stated as a probability because the mediating mechanisms might not function
in the presumed manner for all subordinates (e.g., a partially brain-damaged
subordinate may not be able to make the presumed cognitive comparisons).

A theory of stress may also be used to derive a theoretical rationale for
the molar causal connection between Y (state anxiety) and Y, (role
overload). Subordinates' perceptions*that their role perfor;ance is adversely
affected by inadequate resources should signify to them that they are not

likely to succeed. This perceived or anticipated likelihood of failure
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should arouse conscious affective states of tension and apprehension

because failure should result in negative conseguences, such as reprimands,
failure to be promoted, or dismissals. Thus, the causal connection y, -+

¥y is deperdent on a theoretical rationale involving several mediatin; mechanisms,
n;nely ¥y (role overload) + anticipated likelihood of failure -

anticipaZed likelihood of negative consequences -+ ¥ (state anxiety).

Here again mediating mechanisms render the fun;tional relation
probabilistic if any one of the mechanisms does not operate as expected for
all subjects. To illustrate, while role overload may be perceived, such
perceptions might not lead to feelings of tension and apprehension if
subordinates do not anticipate an association between overload and failure.
Consequently, the occurrence of role overload might not lead invariably to
anxiety for all subordinates and the functional relation is probabilistic.

In conclusion, many functional relations in psychology are nonobvious and
involve molar causal connections among complex variables. A theoretical
rationale involving mediating mechanisms is therefore required to propose how
causes produce effects. An important contribution of a theoretical rationale
is that it assists in differentiating functional relations from simple
covariation. Another contribution is the identification of at least some of
the mediating mechanisms on which functional relations depend. 1In the
situation where a functional relation receiQes only weak probabilistic support
in a confirmatory analysis, or is disconfirmed by that analysis, the presumed
operation of mediating mechanisns is a key source for reevaluation.

Condition 3: Specification of Causal Order

The causal order is typically thought of as a temporal order or segquence
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in which causes occur before effects; a causal order must be specified for
each causal relation. It is also typical to assume that a time interval, or

causal interval, intervenes between the occurrence of a cause and the

occurrence of an effect. This assumption may prove to be a problem, however,
because "in many instances where the scientist speaks of cause (e.g., 'force
causes acceleration'), no time sequence is involved" (Simon, 1977, p. 82).
Simon (1977) "avoided" the time sequence and causal interval issue by arguing
that the causal order anong a set of variables is given by the order in which
variables occur naturally in an asymmetric, self-contained system of
functional relations, and, therefore, the order in which one would solve for
the values of the variables in a system of ordered functional equations.
Figure 2.1 and functional equations 2.1 and 2.2 illustrate a presumed
causal order; the ordering of equations 2.1 and 2.2 denotes that .3 and

X, occur before X_l_’ and that X_l_ occurs before X_2_' Causal intervals are

not specified for the causal connections. This does not imply that causal
intervals are unimportant (in our opinion), and we will discuss causal
intervals both below (briefly) and in a number of the remaining conditions.,
Nevertheless, the point here is that the causal ordering among variables,
with the exception of purely exogenous variables (i.e., X and 52),
is given by the presumed ordering of functional relations and, th;refore—,-
the ordering among the functional equations. This rationale is especially
pertinent to cross-sectional designs where no time intervals are involved
empirically (i.e., all data are collected at the same time). On the other
hand, this reasoning means that one is relying on theory to establish a

causal ordering among variables inasmuch as the functional equations are

themselves given by theory. This may also prove to be problemsome, as
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discussed below.
The important question with respect to causal order is whether the
presumed causal ordering is correct. Consider, for example, that causal crder

is easily established for many naturally occurring events, such as the use of

heroin precedes withdrawal symptoms. On the other hand, causal ordering among
other variables is not generally obvious and is subject to misspecification.
To illustrate, Zajonc (1980) challenged the widely accepted model that
perceptions (P) of situations (S) precede affective reactions (A) to
situations (i.e., S+ P > A). Focusing on the cognitive processing of

"hot cognitions” (e.g., perceptions of danger), Zajonc proposed and supported
r a model of the form S ~ A > P, which suggests that differentiated

cognitive interpretations (P) are a result of an attempt to explain the
affect (A) which occurred almost simultaneously with the presentation of

S. If generalized to the structural model in Figure 2.1, one might argue
that anxiety (xz) occurs prior to perceptions of role overload (Xl) .

This illustration serves to point out that (a) causal ordering among

i variables, especially subjective constructs such as perceptions and

i affect, is often not obvious; (b) one must rely frequently on theory to
propose a causal order; and (cj the theory may be wrong. Now, it is true
that a causal order must be specified before a confirmatory analysis is
conducted, and that one should not explore different causal orders with
the same set of data in order to optimize goodness of fit between a model
and data (Duncan, 1970, 1975). But it is also true that one may test for
alternative causal orders with the same set of data (cf. Billings &
Wroten, 1978). This is possible only if structural models specifying

different orders are proposed prior to the analysis of data. In other
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Cordition 4: Specification of Causal Direction

words, if different theories suggest different causal orders, and if the
theories furnish structural models with conflicting (and empirically
testable) predictions, then it is possible to determine which of the
models, if any, has the best fit with the data (cf. Griffin, 1977).

As a final point, it is often thought that the establishment of a
causal order is facilitated by the use of a time series fom of design,
where measurement of presumed causes precedes measurement of presumed
effects by a discrete, identifiable time period (cf. Ostrom, 1978).
However, measuring presumed causes before presumed effects in no way
implies that the true causal order is consistent with order of measurement
(cf. Rozelle & Campbell, 1969). Moreover, the times of measurement

(measurement intervals) must correspond closely to the true causal

intervals in a time series design (cf. Kenny, 1979), which raises an

obvious problem for psychology inasmuch as causal intervals are often
unknown. Time series designs are discussed in the next condition and in
later conditions. The key points here are thac causal ordering and time
of measurement in a time series analysis should be dictated by prior
knowledge of causal intervals and a structural model; time of measurement
should never dictate causal order, causal intervals, or the structural

model .

Up to now we have focused on unidirectional, or recursive relations
of the form x » y. This emphasis was purposeful and designed to
maintain consistency with Simon's (1977) view of causality as an

asymmetric functional relation. However, studies of causality in science
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also allow for nonrecursive relations which take the form XiI y_i.
This formm implies reciprocal causation between ¥i and x;,
where the variables mutually affect one another. The criterion for
Condition 4 is that all direct causal connections within a structural
model must be specified as either recursive or nonrecursive.

Nonrecursive Models

A nonrecursive model involving reciprocal causation is presented and
discussed below. The discussion includes an interpretation of causality
which, following an amendment to Simon's views, allows for reciprocal
causation. A distinction is then made between nonrecursive and cyclical
recursive models.

A nonrecursive structural model based on a study by Kritzer (1977) and
used by James and Singh (1978) to illustrate reciprocal causation is presented
in Figure 2.2. As with recursive models, the l(_i designate exogenous
events, the y, designate endogenous events, the B's reflect structural
parameters, and_the QX' designate disturbance terms. Functional
equations for nonrecur%ive models are developed in the same manner as those
for recursive models; an equation is constructed for each effect, and includes

all causes having a direct causal connection with that effect. The functional

equations for Figure 2.2 are (assuming linearity and deviation scores):

=B +B +B +d 2.3
'zl =L szz —115151'. 'lllzig_ —X3 (2.3)
AR, =

By convention, endogenous variables involved in a reciprocal relation

are included in a functional equation before the exogenous variables
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(e.9., ¥, is placed before x, and x, in By. 2.3).

The structural model and functional equations are based on the following
causal hypotheses:

1. The anount of violence employed by police at a political protest
event (Xl < the extent to which police use increasingly more
dangerou; controls) is a function of (a) the degree to which police are
prepared for or anticipate violence, as indicated by the presence of riot
equi pment (_)gl) , and (b) verbal provocation by protesters,
operational i;ed by the extent to which obscenities are collectively
shouted by demonstrators (x,). X; and X, are exogenous causes
of Xy and precede ¥; in th_e- caus;l orde;.

-_2. The amount ;f violence evidenced by protesters collectively

(xz —~ operationalized on a scale ranging from protestors' use of
an;iepolice slogans to protestors' use of weapons) is a function of (a)
the conscious attempt by protesters to effect normative controls on
violence (5_3) , and (b) the number of (perceived) arbitrary arrests of
protesters —made by police (54) . X and X, are exogenous
causes of y, and precede y, in t;e causgl order._

3. PoIice violence —(xl) and protester violence (12) are
reciprocal causes of each oth;r. A causal order is not esp-e:cially
relevant here, either police or protesters may initiate violence. The

point is that an initiation or escalation of violence on the part of

police (protesters) is followed by an initiation or escalation of violence
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by the other party. Furthermore, an escalation by one party influences
escalation by the other, resulting in a dynamic system of mutual
causation. It is presumed, however, that the mutual escalation of
violence will level off, or reach an "equilibriumn-type condition" (cf.
Namboordiri et al., 1975), which in part is determined by the values on
the exogenous variables (equilibrium-type conditions are discussed in
Condition 7). For example, the mutual effects between police and
protester violence is less likely to reach the stage of joint use of
weapons if protesters exercise normative control and police do not have
riot equipment available. Finally, and of major importance, it is assumed
that the reciprocal effects between police and protester violence are
essentially instantaneous, or at least so rapid that reliable causal
intervals cannot be determined for either the 'Xl+ 1_2. or X_z.* Y‘l

causal effects.

The discussion above illustrates only one of many reciprocal
causation models for the social sciences. With respect to psychology,
reciprocal causat‘ion is intrinsic to many theoretical models. For
instance, reciprocal causation is indicated in social learning and
cognitive social learning models (cf. Bandura, 1978; Mahoney, 1977;
Mischel, 1977), interactional psychology (cf. Bowers, 1973; Ekehammer,
1974; Endler & Magnusson, 1976; Pervin, 1968), and social system and
organizational theory (cf. Dansereau, Graen, & Haga, 1975; James & Jones,
1976; Roberts, Hulin, & Rousseau, 1978). Furthermore, confirmatory
analysis provides analytic techniques to test nonrecursive models

involving reciprocal causation. Two of the most popular of these
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techniques were reviewed recently in the psychological literature. These
methods are two-stage least squares (James, 1981; James & Singh, 1978) and
max imum likelihood estimation (Maruyama & McGarvey, 1980). A review of
these procedures is beyond the scope of this paper, although it is
noteworthy that Kritzer (1977) used the two-stage least squares technique
to test (and support) the hypothesized reciprocal causation between police
and protester violence.

To summarize, each causal connection in a structural model must be
specified as either recursive or nonrecursive., It is also necessary to
stipulate that not all relations in a structural model may be
nonrecursive. This stipulation evolves from the "identification”
question, which is concerned with whether sufficient information is
available to obtain unique mathematical solutions for the structural
parameters in functional equations (cf. Fisher, 1966; Theil, 1971).
Identification is discussed in Conditions 9 and 10. At this time we note
only that functional equations representing nonrecursive relations are
identified if there exists at least one "instrument" for each endogenous
variable involved in a reciprocal relationship. In general terms, an
instrument is an exogenous variable that affects only one of the
endogenous variables involved in a reciprocal relationship. For example,
each of the exogenous variables in Figure 2.2 is an instrument because
each of these variables is a cause of either Y1 OF Yor but not
both Xg.and ;2.

We now turn to the apparent paradox of defining causality as an
asymmetric functional relation and then entertaining the concept of

reciprocal causation. To review briefly, the stipulation of

ISTU Y
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asymmetric functional relations was designed (a) to avoid confusion of
causation with logical implication, and (b) to differentiate functional
relations from ordinary mathematical functions, where, for example,

e = EE? implies g? = e¢/m. The fidelity of the stipulation is

preserved by stating that XZ = E(xl' gzz) does not imply that

xl = EX!%? 911)' This does not rule out, however, the offering of a
causal hypothesis that y, = f(y,, d;). That is, hypothesizing a
functional relation does_hot au;;mazgcally imply a reciprocal form of
relation, but a reciprocal relation may be proposed as part of a
structural model. For example, the hypothesis that child behavior =
f(mother behavior) does not imply mother behavior = f(child behavior).
However, we may propose two functional relations, namely child behavior =
f(mother behavior) and mother behavior = f(child behavior). (Based on
the preceding discussion, instruments would have to be added to each of the
functions before anelyses could be performed.)

In sum, reciprocal causation is amenable to confirmatory analysis and
is consistent with a functional definition‘'of causality. It is necessary,
however to amend Simon's (1977) definition of causality to allow for
reciprocal causation. This amendment is: "Causality is a functional
relation among certain variables, or subsets of variables, in a
self-contained structure, where functional relation does not imply

reciprocal relation but reciprocal relations may be postulated.”




Cyclical Recursive Models 46

The concluding objective of this section is to distinguish between
reciprocal causation and "cyclical causation". Reciprocal causation
refers to relations of the formm y, : Yy where the causal intervals for
the X_i_ "xl and xi - X_i_ causal connections are rapid and
essentially indiscernable. If, however, a causal interval can be
established for the Xi > Xj and xi ”i causal connections,
then one has a structural model such as shown in Figure 2.3. The essence of
this model is that the occurrence of Xl at time t (i.e., Y-_l_f:) causes
the occurrence of XE at time t+l (i.e., X_2.E+_1_) , where the time
interval between t and t+l is discernible. The occurrence of ¥, at
time t+l then, through a feedback loop shown at the top of Figure 2.3, causes
the occurrence of Y, at time 2 (i.e., X}}?E) , where again the time
interval between t+l and t+2 is discernable. This cycle repeats itself and

we have cyclical causation.

Insert Figure 2.3 about here

The structural model in Figure 2.3 is a form of time series design.
Of special importance is the fact that it is a recursive model inasmuch
as all causal relations are asymmetric. That is, each causal relation is
recursive because a time interval may be specified between the occurrence
of a cause and the occurrence of an effect (cf. Strotz & Wold, 1971). We
shall refer to this design as a "cyclical recursive model,”

The functional equations for Figure 2.3 are shown below. ¥, and

Y, are specified in the subscripts of structural parameters and disturbance

terms by a "1" or a "2" preceding the time indicator. Y; at time t




47
assumes the role of an exogenous variable (i.e., its occurrence is not to be

explained by this model).

Loe+1 = Boery,1efae * Soeey (2.5)
Y1ev2 = Biev2, 20000641 ¥ dies2 (2.6)
Yoer3 = Baees,1eeofiers ¥ See3 (2.7)
Yieeq = Bresq, 204363 * ieng (2.8)

Linear relations and deviation scores are assumed. Furthermore, it must
be assumed not only that the causal intervals known, but also that the times
of measurement of variables representing y, and y, (i.e., measurement
intervals) correspord closely to the causal int;rvals. ;inally, as discussed
in greater detail in Condition 7, the model and functional equations must be
"stationary". Stationarity refers to the stability of a structural model,
and would be indicated here if the structural parameters with cammon causes

and effects are equal (i.e.;, Byrj 541 = Bresg,oee3r 27 Baray,it

= Bore3,1042)

In conclusion, while there is much to be said in favor of reciprocal
causation (nonrecursive relations) and cyclical causation (cyclical recursive
relations) in psychological research, we shall continue to employ simple
recursive models for illustrative purposes.

Condition 5: Self-Contained Functional Bjuations

Simon (1977) discussed self-contaimment in the context of an ordered
system of functional equations representing a recursive structural model.

However, an overview of the basic logic and requirements of self-contaimment




48
is made easier by focusing on a single functional equation. We will
discuss self-containment in this context.

As discussed previously, a (probabilistic) functional equation is
representative of a causal relation only if the functional equation is
self-contained, and an equation is self-contained only if all relevant causes
of the endogenous variable are included in the functional equation. To
illustrate, consider the part of the model in Figure 2.1 which deals with
causes of role overload. This part is reproduced in Figure 2.4a. The linear

functional equation for role overload is, in deviation form:
¥; =B X, +B, (X + (d, =RS) (2.9)

Insert Figure 2.4 about here

Equation 2.9 is the same as Eg. 2.1 with the exception that gY. has
1

been specified as being made up exclusively of randam shocks (RS). This

specfication implies that X and X, are the only relevant causes of

Yy which suggests that no other variable exists which simul taneously (a)
has a direct, nomninor influence on Yy (b) is stable, (c) is related to

X, and/or x,, and (d) is not linearly dependent on X, and Xx,.

That is, no other relevant causes exist for Y- Consequently, X and

X, will not be related to g—y

value of the covariance between a variable and random shock is zero

because, by definition, the expected

le:gs E(qd)) = E(4RS) = Oxpg =0 Glventhatd
is unrelated 1'551 and x,, it follows that the conditional expected

values of ¥, are determined by a conditional function, or




+ 2 In other words, the equation

B Xoe
Y X2
is self-contained and the functional equation, and functional

relation y_l = _f_(é_,_)gg,gll) , may be used to represent a causal
relation (assuming that other conditions have been met) .

Now, suppose a relevant cause of role overload is not included
explicitly in the functional equation. A possible example of such a
relevant cause is the degree to which the work enviromment is perceived to
be "impersonal". An impersonal enviromment suggests that management
focuses on productivity and profit, with little attention given to
employees' needs and capabilities, By contrast, a "personal™ enviromment
connotes consideration of employées' needs and capabilities in addition to
concerns for productivity and profit. Employees are predicted to be
overloaded in impersonal enviromments, in comparison to personal
enviroments, because management in such enviromments strives for economic
and performance goals even after the personal capacities of employees have
been exceeded. Thus, "impersonality" might be hypothesized to be a major
cause of role overload.

Another important characteristic of a relevant cause is that it
covaries with @ causal variablds)included explicitly in a functional
equation. Impersonality is likely to covary with both expected quality and
quantity of role performance because managers who focus only on
productivity and profit are more likely to demand higher levels of quality
and quantity of performance than managers more attuned to the effects of
their demands on employees. On the other hand, impersonality is not
expected to be redundant with, or linearly dependent on, quality and

In other words, impersonality might be

quantity of role performance.
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viewed as having a unique effect on role overload.

A model including impersonality is displayed in Figure 2.4b. The
unmeasured a (impersonality) is represented in the disturbance temm for
Yy along with the RS component. It is assumed that a fits all the
c;iteria for a relevant cause of Ypr including relationships with X
and X, (indicated by the curved, d;uble—headed arrows between a and_
both ;1 and 52) , but not linear dependence on .3 and %o The
curved_,- dOLbl;—headed arrows also indicate that :he relat—i-onships between a

ard the x's are not to be explained by this model.

The functional equation for Figure 2.4b is

=B + B X, + (d = RS + 2.10
X.]_'. “_Y_]_.’El')"'l ‘11_’52‘_2_ (_.Y.l BB+a ( )

The curved (double-headed) arrows relating a to Xy and X, in Figure

2.4b show that both X, and X, should covary with gy . The expected
= - =1
value of the covariance between X, and QX is: - ‘
- 1 11
E(ﬁ}_gx ) = _E_[g(_l(B_&j +al,
= E(ll&%) + __E_:_(l‘_}._a_) ¢
=% a (2.11)
_l._.
where o . is a (population) covariance. A similar derivation
-1=
demonstrates covariation between x, and gx .
= 1
Assuming linearity and additivity, covariation between gz and
1
X, and x, brought about by inclusion of a ind  implies that

1)
the functional equation (Eq. 2.10), and the model from which it was derived,
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are not self-contained. To be specific, the model in Figure 2.4b is not
self~contained because the conditional expected values of ¥, are no
longer determined by the conditional function B X, +B X,

™ Y AL A%. 5]
To achieve self-containment, not only should this function include a tem for
a (i.e., EX -\ but also the structural parameters for x, and

1— =
X, should include controls for a (e.q., ). Thus,

< ?‘)’_151'2‘_2_3_
with a umeasured, Bq. 2.10 is misspecified because it omits a relevant
cause. In fact, Eq. 2.10 is not a functional equation because it is not
self-contained. Consequently, neither the equation nor the functional
relation represents a causal relation.

In summary, the condition of self-containment is satisfied only if the
causes included explicitly in a functicnal equation are unrelated to the
disturbance term of that equation., Pragmatically, failure to satisfy this
condition results in biased estimates of structural parameters, which is
demonstrated in Condition 9. Of importance here is the fact that many
published confirmatory studies in psychology have paid no attention
whatever to the need for self-contained equations (and systems) (Billings &
Wroten, 1978; James, 1980; Cliff, 1980). Review of these studies reveals
obvious and serious violations of the self-containment condition.
Consequently, it is our opinion that the confirmmatory literature in
psychology is inundated with biased estimates of structural parameters, or,
if you wish, equations that have only remote bearing on causal relations.
This is rather difficult to understand inasmuch as almost all introductory
texts on confimmatory analysis highlight the need to include relevant causes
in functional equations, although the terminology and format used to present

this condition vary. For example, the condition is discussed in terms of
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covariation between Gauses and disturbance tems (Duncan, 1975; Johnston,
1972), covariation among disturbance terms (Namboodiri et al., 1975), and

nonspur iousness (Kenny, 1979).

This problem deserves immediate attention. Unfortunately, such
attention is unlikely to result in total resolution of the problem because
all relevant causes of endogenous variables are not likely to be known
(Duncan, 1975; Heise, 1975; Kenny, 1975). As noted by James (1980, p.
415) , "The operative gquestion is not whether one has an unmeasured
variables problem but rather the degree to which the unavoidable
unmeasured variables problem biases estimates of path coefficients (a form
of structural parameter] and provides a basis for alternative explanations
of results.” This statement was grounded on the logic that (a) scientific
investigation must proceed based on what is known at the present time,
recognizing that present knowledge is incomplete; (b) one must judge
whether enough information has accumulated to justify both the development
of a structural model and the conduct of a confirmatory analysis; and (¢)
all known relevant causes should be included in a model and its
functional equations. In other words, given that one believes that it is
reasonable to proceed with confirmatory analysis, then the pragmatic
question is whether known relevant causes are included in the functional
equations. 1In this regard, it is fair to ask whether prior failures to
include relevant causes in structural models and functional equations
could have been avoided by not only an awareness of the self-contaimment
condition, but also by more thoughtfully developed structural models. We

recanmend that investigators submit their models to their own and others'
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careful scrutiny, attempting to identify unmeasured relevant causes,
before data are collected. In the discussion of Cordition 9 we present a
set of decision steps that assist in evaluating the likelihood that
unmeasured relevant cases will bias estimates of structural parameters.
At that time we will also discuss the use of a time series design that
makes possible the minimization of bias in estimates of structural
parameters created by unmeasured relevant causes.

Condition 6: Specification of Boundaries

Boundaries specify the contexts (e.g., types of subjects and
enviromments) within which functional relations are expected to
i generalize. Given linearity in both parameters and variables, this
i condition is satisfied if the functional equation relating an effect to
its causes is not contingent on other variables (Kenny, 1979). In other
] words, the functional relation should be additive. The condition is
; violated if the functional relation is contingent on, or moderated by,
the values on a third or more variables. This is because a significant
moderator effect implies interaction, from which it follows that direct
causal connections of the form X -y cannot be interpreted
unambiguously.

Tests for interaction/moderation should be conducted as part of a
confirmatory analysis when prior research and/or theory suggest the
presence of a moderator. If the potential moderator is a categorical
variable, then the values of the structural parameters may be estimated
separately for each value of the moderator, such as one analysis for males
and another analysis for females. Tests for moderation are then often

based on an assessment of whether the estimates of the structural
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parameters vary as a function of the "subgroups" established by different
values of the moderator (cf. Schoenberg, 1972; Joreskog & Sérbom, 1979;
Specht & Warren, 1976). The temm subgroup refers to subpopulations
(subsamples) in which all relationships are linear and additive (cf.
Zedeck, 1971). If the moderator (or moderators) is a continuous variable
(e.g., age), then more complex analytic procedures are required. 1In
general, these procedures assume a form similar to moderated regression
(cf. Cohen & Cohen, 1975), althouwgh more sophisticated methods are
required for causal interpretation. An excellent and readable discussion
of these methods was presented recently by Stolzenberg {(1979). Methods
for estimating structural parameters given nonlinearity in the variables
are also presented by Stolzenberg.

In summary, our primary concern here is to point out that the
existence of a moderator, or moderators, requires careful specification of
the boundaries of a structural model. Taking the simple case where a
moderator is a categorical variable, a different structural model and
accampanying functional equations are required for each value of the
moderator (i.e., each subgroup). In other words, each value of the
moderator forms the boundary for each structural model. Clearly,
moderators inflate the camplexity of confimmatory analysis, and attempts
should be made to specify the original boundaries of a structural model in
a manner that reduces the likelihood of moderation. Conversely, failure
to identify a significant moderator will result in inaccurate estimates of
structural parameters and erroneous causal inferences regarding the
magnitudes of causal effects.

Condition 7: Stability of the Structural Model
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A structural model is expected to be stable. Stability is indicated
if the values of structural parameters in functional equations are
invariant, or stationary, over specified time intervals (cf. Pindyck &
Rubinfeld, 1976). The importance of stability becames clear if its
obverse is considered., If the variables in a structural model are in a
state of flux, then the relationships among the variables are likely to
change rather rapidly. Consequently, data collected at two points in
time, within a relatively short time interval, would provide two different
sets of equations for the same set of variables; that is, the estimated
structural parameters would assume different values at each point in time.
This is an impossible situation because the structural model could not be
generalized beyond a few days or weeks. On the other hand, if the
parameter estimates remain the same over time periods that are reasonable
and meaningful for the variables of interest, then a basis is provided for
generalizing the results of a confirmatory analysis beyond very restricted
time intervals. Note, however, that the stability condition does not
suwggest that a particular structural model will be invariant with respect
to long periods of time. The point is that a structural model should
possess enough stability for generalization across a reasonable and
meaningful time interval (cf. Simon, 1977).

Equilibriun-type Condition

A subtle but critical implication of the stability condition is that
the values on the variables in a functional equation should have reached a
temporary state of approximate constancy before an attempt is made to
measure them and to use the data to estimate structural parameters. This

temporary state of constancy is referred to as the equilibrium-type




condition (Namboodiri et al., 1975). The equilibriumtype condition is
almost unheard of in the psychological literature, a literature which
relies heavily on cross-sectional designs in confirmatory analysis.,
Stated directly, it is precisely the assumption that the
equilibriun-type condition has been satisfied that justifies using
cross-sectional designs to estimate structural parameters. Specifically,
cross—sectional designs attempt to model (capture) causal processes that
have already occurred via functional equations that employ fixed constants
(i.e., structural parameters) (Pindyck & Rubinfeld, 1976). Estimation of
the fixed constants is justified only in the condition that the effects of
the exogenous variables on the endogenous variables have worked their way
through the causal system. This means that subjects' scores on the
endogenous and exogenous variables are temporarily fixed, or
"equilibrated" (Heise, 1975), or at least any effect which does occur
during the equilibrium period is so rapid that a temporary equilibrium is
rapidly reestablished (Simon, 1977). Given an equilibrium-type condition,
in combination with (a) sampling that has been of sufficient breadth to
guarantee large differences among subjects on each of the variables, and
(b) functional equations that are appropriate for all subjects in the
population fram which a random sample was drawn, one may model prior
causal processes by relying on cross-sectional comparisons across subjects
to infer processes that have been at work for a particular subject over
time (Heise, 1975; Miller, 1971; Namboodiri et al., 1975).

Consider, for example, the structural model for role overload and
state anxiety (Figure 2.l—which, for illustrative purposes, is considered

self-contained) . The preceding discussion suggests that, for a
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cross—~sectional design, one would want to sample work enviromments and
individuals so as to guarantee large variations in expected quality and
quantity of role performance, perceptions of role overload, and state

anxiety. Data should be collected only after the effects of role

expectations on role overload, and the effects of role overload on state
anxiety, have had a chance to stabilize (equilibrate) in each work
enviromment and for each subject; that is, only after values on the
variables have reached a temporary state of constancy. Assuming the
functional relations are applicable for all subjects and work enviromments
(see Condition 6), analytic procedures discussed in Conditions 9 and 10
could then be used to capture the prior causal processes that generated
the particular configuration or pattern of values on the variables
obtained in the cross-sectional analysis.

An equilibrium~type condition is also assumed for each wave (time) of
measurement in a time series analysis. However, the temporary equilibrium
at a particular time is lost as soon as changes occur in one or more
causal variables. The changes in causal variables produce changes in
effects, and a new temporary equilibrium is established when the values on
all variables reach a new temporary state of constancy. This is referred
to as a "shift in equilibrium levels" (cf. Namboodiri et al., 1975}.
Given changes in a causal variables, the time period required to
reestablish a temporary equilibrium in an effect is referred to as the
"equilibration time" (Heise, 1975), which is the causal interval. (It is
assuned that the values of causes remain constant within the causal

interval.) If (a) the functional relations are stationary (i.e., the

structural parameters are invariant with respect to shifts in equilibrium

AT A 0 ey I
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levels) and (b) times of measurement correspond closely to causal
intervals, then (c) it is possible to attempt to fit functional equations
to the shifts in equilibrium levels. Only then can we use these
functional equations to infer the causal processes that produced the
shifts (cf. Namboodiri et al., 1975).

To summarize, the stability condition is satisfied if the values on
variables have reached a temporary state of constancy for each time of
measurement (equilibrium-type condition) and the functional equations are
the same over specified time intervals (stationarity). These points apply
to recursive models, including cyclical recursive models. They apply also
to nonrecursive models, although the process by which the endogenous
variables involved in dynamic, reciprocal relationships reach an
approximate state of equilibrium requires advanced mathematics. A
relatively nontechnical overview of this process is presented in Heise
(1975) and Namboodiri et al. (197%)

Equilibriun-type conditions and causal order.

It was suggested in Condition 3 that the causal ordering among
variables is often less than obvious and subject to misspecification.
Consider, as an example, the popular "social systems" concept (cf. Katz &
Kahn, 1978), which in many areas of psychology gives rise to serious
concerns about causal ordering because all variables in the social
system are regarded as causally related to each other, directly or
indirectly. We illustrate this by the simple, nonelaborate model shown in
Figure 2.5a. This model predicts that increases in organizational control
processes (e.g., implementation of weekly time and effort statements)

cause increases in employee dissatisfaction. These in turn lead to
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increases in dysfunctional behaviors (e.g., absenteeism, clock-watching,
work slowdowns). Dysfunctional behaviors may then serve as a stimulus for
even greater organizational controls, which lead to greater
dissatisfaction, and so on, so that an iterative, recurring cycle of
control - dissatisfaction ~ dysfunctional behaviors ~ control is
established., Note that the point at which the cycle begins is arbitrary;
the cycle might also have started with employee dissatisfaction or
dysfunctional behaviors.

This model does not present a major problem for a time series design. ‘

In this type of design, the feedback processes could be captured by a

cyclical recursive model, beginning at an arbitrary point and, for
example, obtaining two measures of each variable, where time of
measurement corresponds to causal intervals (equilibration times). On the
other hand, this model creates a major problem for cross—-sectional designs
because once the cycle is operative, the causal relationships are in a

system of infinite regress and specification of causal order is arbitrary.

Insert Figure 2.5 about here

Translated into the terminology of structural models, this reasoning
impl ies that all variables are endogenous in a cross-sectional
appl ication of Figure 2.5a. Confirmatory analysis cannot proceed in such
an ambiguous situation. It is necessary to identify predetermined,
exogenous variables that are not caused by endogenous variables, and to

use these predetermined variables to establish causal precedence. In
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pursuit of this objective, Miller (1971) reasoned that even though all
variables in a structural model may be related, particularly over long
periods of time, it is possible that the effects of some variables on
others will be so small or infrequent as to be negligible in a particular
interval in time. Consequently, within a specific time interval that is
relatively short but generalizable, it is possibleto establish a causal
order for cross-sectional designs by specifying that (a) causes must have
at least a moderate influence on effects within the time interval, and (b)
a variable whose causal influence is slow and thus does not occur within
the bounds of the time interval should be treated only as an effect.

For example, in the illustration in Figure 2.5 one might postulate
that the effects of organizational control on dissatisfaction, and
dissatisfaction on dysfunctional behaviors, occur much more rapidly than
the effects of dysfunctional behaviors on organizational control. This is
reasonable given that affective and behavioral outcames are individually

< determined and may occur quickly, whereas changes in organizational
control may require multiple inputs from different line managers and staff
(e.g., legal opinions), deliberations regarding alternatives, and time to
implement formal decisions. Consequently, a time interval could be
identified in which control influences dissatisfaction and then
dissatisfaction influences behaviors, but behaviors do not significantly
influence control. Thus, dysfunctional behaviors could be treated only as H
an effect. That is, we expect the influence of dysfunctional behaviors on
organizational control to take a period of time greater than that bounded h
by the time interval. It must be emphasized, however, that the model {

could not be generalized beyond the specified temporal bound.
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In effect, the preceding argument rests on establishing a causal order
using differences in equilibration times and assumptions regarding strengths
of causal influences in a short but generalizable equilibrium~type condition.
To illustrate, consider Figure 2.5b, which displays the presumed causal
ordering in the time interval extending from £y to ko and an

equilibriumtype condition extending from time EZ to time 1:_3.

Organization control is assumed to have stabilized (equilibrated) at time

EO' and to remain constant until time t The interval between

30

LN and Y is the equilibration time required for employee

dissatisfaction to stabilize; that is, the causal interval for the
organizational control -+ employee dissatisfaction causal effect. Once

employee dissatisfaction has stabilized, it, like control, is expected to

remain constant through at least time E;. The time interval between

El and _Ez is the equilibration time for the employee dissatisfaction =~

dysfunctional behaviors causal influence. Finally, the period encompassed by

32 to _r:3 is the equilibriumtype condition, where the values on all

three variables, including dysfunctional behaviors, are expected to remain

relatively constant. This is the time period within which data should be
cullected for a cross-sectional analysis.

The equilibrium-type condition will end at the time that values on
the variable representing organizational control begin to charge as a
result of the causal influences of dysfunctional behaviors. However, the
equilibration time for the dysfunctional behaviors + organizational
control causal relation is expected to be substantially longer than the

time period extending from _t:_0 to ti.

This implies that (a) the

equilibration times represented by EO to 5—1 ard El to 52 are




much more rapid (i.e., shorter) than the equilibration time for the

dysfunctional behaviorsrorganizational control causal influence, and (b)

3 given the slow dysfunctional behaviors*organizational control causal effect,
b values on the variables may be regarded as equilibrated during the
equil ibriumr-type condition (t, to .

i To summarize, in this subsection we have shown how the equilibrium- ’

type condition is useful when theorizing about causal ordering in

cross—sectional designs. Salient implications of using differences in
equilibration times and assumed lengths of equilibrium-type conditions to

predict causal orderings are (a) "time" is an important consideration in ‘

] cross—sectional designs; (b) researchers must be specific about

assumptions regarding time, especially the generalizability of a presumed !

causal ordering in regard to time; and (c) different assumptions regarding

t time may lead to different causal orderings. On the other hand,

assumptions regarding time are less demanding in cross-~sectional designs

than in time series designs. For example, one may "-jet by" with only i

assumptions regarding "relative differences" in equilibration times in

cross—-sectional designs, whereas time series analysis requires specific

knowledge (or predictions) of actual causal intervals.

Summary i
This campletes the discussion of the seven conditions pertaining to ‘

the appropriateness of theoretical/structural models for confirmatory

analysis. The seven conditions are summarized in Figure 2.6. It must be

stressed that lack of reasonable satisfaction of one or more of these

conditions results in questionable use of confirmatory analysis. We shall

continue to emphasize this point in the remaining presentations in this ‘
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text, where false conclusions regarding empirical confirmation or
disconfirmation are shown to result from violation of aspects of
Conditions 1 thrugh 7, as well as Condition 8 (operationalization of

constructs) .

Insert Figure 2.6 about here

We now turn to a review of the conditions pertaining to the
operational aspects of confirmatory analysis. Because these operational
aspects are the subject of a rapidly growing literature in psychology, not
to mention large literatures in areas such as econometrics and sociology,
the presentation emphasizes the logic of confirmmatory analytic pcocedures.

References are suggested for more extensive treatments of methods.

Conditions Pertaining to Operational Aspects of Conlirmatory Analysis

Condition 8: The Operationalization of Variables

We have used the term "variable" to refer to sets of classes of events
formed because the classes of events have some attribute in common. For
exanple, we may form a class of events from all those things weighing
_)gi pounds. If we have several such classes, each associated with a
d:fferent weight, then we may join these classes together to provide a set
of classes of events, all of which have the common attribute weight. This
set will provide the basis for the variable "weight". Now, operational-
ization of a variable means specifying the operations by which we would

seek to assign a specific event (thing) occurring in the world to one of
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the classes of events of a variable, where the events in each class
share a common value on a scale in which all classes of events have a
camnmon attribute,
An important aspect of operationalization is measurement, which

concerns the assigrmment of numbers to classes of events so that

relationships among the numbers correspond to empirical relationships among
the classes of events. Measurement is not, however, merely the assigmment
of numbers to classes of events of a variable. The relations among the
assigned numbers must correspond to an already established empirical
relationship among the classes of events. A common but grave mistake is to
assume that by assigning numbers in an arbitrary, or at best not well
understood way, one has achieved measurement. The mistake is especially
canpounded if one believes there will be magical mathematical techniques,
such as exploratory factor analysis or multidimensional scaling, that will
salvage clear empirical meaning from the numbers.

When numbers have been assigned to the classes of events of a

variable, we then have a quantitative variable. Moreover, when the

numbers assigned to classes of events represent meaningful empirical
relationships among the classes, then we may give empirical meaning to
quantitative relationships between one measured variable and another. In
particular, we will be interested in establishing functional relationships
between variables by employing quantitative variables to represent
variables in functional equations. To do this, we must presume in our

appl ications that the scientist has quantitative variables with at least an

interval level of measurement. Thus, for the purposes of discussion, we

will assume that all foms of variables are, or may be, represented as




65

quantitative variables with interval scaJ.es.3 Consequently, the temm
quantitative is not specified explicitly.

The preceding discussion of operationalization of variables and
measurement focused on manifest variables, which were defined earlier as
variables associated with directly observable events. The empirical
content of a manifest variable is reflected directly by assigning
observable events to values on the measurement scale of the variable. We
also introduced earlier the term latent variable, which was defined as an
abstract or theoretical construct associated with presumed, but not
directly observable, events. Latent variables cannot be measured directly,
rather they derive their empirical content through linkages with the
directly measurable manifest variables, A latent variable is usually
portrayed as a canmon factor which acts as a cause of one or more manifest
variables and whose empirical content can only be assessed indirectly by
examining empirical relations among manifest variables. A latent variable
is operationalized in the sense that attempts are made to articulate not
only linkages between hypothetical constructs and manifest variables, but
also linkages among hypothetical constructs. B8oth of these attempts to
articulate a latent variable are dependent on empirical relations among
manifest variables.

when each theoretical construct (latent variable) is represented by a
single corresponding Ea_n_ifﬁ variable in a structural model, the model

is referred to as an observed or manifest variable design. 1In this

case, each manifest variable is used as a direct surrogate of a thoeretical
construct, and relationships among the manifest variables are used as

direct surrogates of relationships among the constructs. When manifest
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variables are used in this manner, it is critical that the variables be
accurate representations of the constructs. Accurate representations are
indicated when (a) the manifest variables are, technically, perfectly
reliable, although high reliability is generally considered sufficient for
reasonable satisfaction of this condition (cf. Duncan, 1975); and (b) the
manifest variables, and relationships among the manifest variables, are not
subject to, or at least are minimally influenced by, nonrandom measurement
errors introduced by extraneous, unmeasured influences or improper
measurement procedures. Included in the broad category of nonrandam
measurement errors are: (a) aggregation and disaggregation bias (cf.
Borgatta & Jackson, 1980; Firebaugh, 1978; Hannan, 197la, 1971b); (b)
ceiling and floor effects in measurement scales (cf. Carroll, 1961); (c)
classification errors, such as reducing a psychometrically reliable and
valid continuous scale to a dichotomy (cf. Namboodiri et al., 1975); (d)
method variance, which suggests that covariation among manifest variables
representing different constructs is spuriously inflated due to a cammon
measurement procedure (cf. Campbell & Fisk, 1959; Cronbach & Meehl, 1955);
and (e) serially correlated errors of measurement resulting from the use of
the same measurement scale(s) in two or more waves of data collection (cf.

Werts, Linn & J8reskog, 1971).

Psychologists are generally aware of the basic tenets of scale
development, reliability, and most of the concerns associated with
nonrandam measurement errors. They are also aware of the fact that it is
extremely difficult, and at times impossible, to develop measurement

instruments that encampass only Small amounts of measurement error and are
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free of nonrandom measurement errors. Nevertheless, while some slippage
is allowed in meeting assumptions regarding random and nonrandom
measurement errors in confirmatory analysis with manifest variables, the

degree of slippage allowed is comparatively smaller than psychologists

have enjoyed in exploratory (e.g., correlational) analysis.

The reason for insisting on more rigorous psychometric and
statistical criteria is that the investigator is playing for higher stakes
in confirmatory analysis. Because the aim of confirmatory analysis is
causal inference and explanation, confirmatory analysis must be based on a
fimer psychometric and statistical base than is often found in
exploratory studies. Thus, for example, "reasonable satisfaction" of the
reliability assumption in a confirmatory analysis on manifest variables
still requires high reliabilities. While available research does not
allow for an unequivocal specification of "high", it is also the case that
rationale such as "a reliability of .70 was sufficient for exploratory
purposes® is unacceptable because a reliability of ,70 may result in
serious attenuation of parameter solutions or estimates. Furthemmore,

attenuation in parameter solutions and estimates is only one of many

possibilities when a functional equation involves multiple causal
variables, each of which involves random measurement error (e.g., the bias

may be upward and signs may be reversed—cf. Blalock, Wells, & Carter,

D

1970; Kenny, 1979). In this regard, Kenny (1579) suggested that in the
5 multivariate case the bias due to measurement error may be negligible if
(a) reliabilities are high, (b) the (true) causal effects are small,

and/or (c) the causal variables have low intercorrelations. We suggest

that researchers focus their attention on option (a).
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The implication of the need for rigorous standards regarding
operationalization of manifest variables is that the use of confirmatory
procedures may be restricted for manifest variable designs in psychology.
We illustrate this point in the introduction of Section 4 (latent
variables) by demonstrating the bias in estimates of structural parameters
resulting from random measurement errors in observed variables. In
Section 4 we also demonstrate how one can proceed with confirmatory
analysis given some randam measurement error in manifest variables and
certain types of nonrandam measurement errors (e.g., presence of method
variance, serially correlated measurement errors) if one uses a latent
variable fom of analysis. However, for the present we will introduce
and overview the logic of confimmation and disconfirmation using manifest

variable designs.

Condition 9: Empirical Confirmation of Predictions I: BEmpirical Support for

Functional Equations

If Conditions 1 through 7 are considered reasonably satisfied, and if
manifest variables are reasonably accurate representations of the
constructs they are designed to measure, then it is possible to proceed
with confimatory analysis using manifest variables. The objective of
such an analysis is to confirm or disconfirm a structural model. This is
the process that is generally thought of as confirmatory analysis, where
confirmation implies that a structural model, and the functional
relations and equations representing the model, are useful for making
causal inferences to explain how variables occur and why they covary

(excluding purely exogenous variables). Disconfirmation implies that
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the structural model (functional relations and equations) are not useful
in this regard. Given linear functional equations, the logical foundation
of confirmation and disconfirmation is often viewed in terms of the
following three principles.

1. The functional relations and equations relating effects to
causes in a linear structural model may be used to derive
a set of predictions regarding the observed correlations
(or variances~covariances) among the manifest variables.

2. A structural model is confirmed if the predictions regarding
correlations (variances—covariances) among manifest variables
are consistent with the observed (i.e., empirically derived)
correlations (variances-covariances) among manifest variables.

A structural model is disconfirmed if predictions and
observed correlations (variances-covariances) are inconsistent.

3. Confimmation of predictions implies corroborative support for
the structural model represented by the functional relations
and equations. Disconfimation of predictions implies that one
or more components of the structural model (functional relations
and equations) is false, in which case it is concluded that the
structural model as proposed originally is invalid.

The present condition and Condition 10 focus on Principles 1 and 2. It
is shown that predictions regarding correlations (variances~ covariances)
among manifest variables, and confirmation/disconfirmation of these
predictions, can be addressed empirically by testing predictions regarding
the magnitudes of estimates of structural parameters. In the present

condition, we consider tests of whether or not structural parameters that are
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predicted by the structural model to be nonzero are different from zero. In
Condition 10 we discuss tests of whether or not structural parameters that
are predicted by the structural model to be equal to zero are zero, or
approximately zero. When combined, these two sets of tests furnish the
infomation needed to ascertain whether a model has been confirmed or
disconfirmed.

Principle 3 is considered in Section 3 of this paper, where we address
the roles of empirical confirmation and disconfirmation in causal inference.

The discussion of Condition 9 is organized as follows: (a) tests of
predictions regarding structural parameters associated with causes, which
includes an overview of identification, ordinary least squares (OLS)
estimation, and tests of significance for a recursive model; (b) the use

of standardized versus unstandardized manifest variables, where advantages

and disadvantages of the path analytic approach to confirmatory analysis

are reviewed; and (c) a specification error of major interest to
psychologists, namely unmeasured re'evant cases in equations that are

presumed to be self-contained functional equations.

Tests of Predictions Regarding Structural Parameters Associated with Causes

Stated simply, inclusion of a variable as a cause in a functiocnal

equation indicates that the structural parameter associated with that

variable is hypothesized to be different fram zero. It follows that if
i (a) we employ a statistical estimating equation to represent the

functional equation, then (b) the estimates of the structural parameters
provided by the statistical equation are predicted to be different from

zero. Given reasonable satisfaction of Conditions 1 through 8, the




predictions regarding estimated structural parameters can be tested in

random samples from well-defined (i.e., boundaries specified) populations
by estimating statistically the values of structural parameters and
conducting tests of significance on the estimates. If the estimate of a
structural parameter is significantly different from zero, then the
prediction is regarded as confirmed, which implies that the functional
equation is consistent with empirical data (i.e., the statistical
estimating equation). If one or more estimates is not significantly
different from zero, then the prediction(s) is disconfirmed, implying that
the functional equation is not consistent with the data.

The preceding points are illustrated usingthe structural model shown
in Figure 2.7. Of initial importance is that all (manifest) variables in
Figure 2.7 are represented by an x. This notation is adopted to
simplify subscripting parameters and statistics in equations. The subscripts
for the x's denote causal order, the E_ij- (i>j) are structural
parameters, and the g—i are disturbance terms. The structural model is
"fully recursive", wh;ch means that (a) the model includes only one exogenous
variable (51) . (b) the direction of all causal connections is asymmetric,
and (c) eac; event higher in the causal order is a function of all events
lower in the causal order, plus a disturbance term [e.g., X, = £(x),
52,5_3,d )]. For illustrative purposes, we presume that emp;rical gata

are to be collected on a cross—-sectional basis on a randan sample of subjects

from a well-defined population.

Insert Figure 2.7 about here




N

The linear functional equations, in deviation fomm, are shown in
Figure 2.7 (Egs. 2.7a throwh 2.7¢). In confimatory analysis, a

functional equation is often referred to as a structural equation. This

swygests that the structure of causal connections among variables is
represented by the equations. We will, however, continue to use the temm
*functional equation". The objective now is to estimate the values of the
structural parameters in Bgs. 2.7a through 2.7c.

Identification. The first step in this process is to ascertain

whether each of the functional equations is identified. As discussed

earlier, this concerns the question of whether sufficient infommation is

available to obtain unique mathematical solutions of the structural
parameters., E‘or-recursive, manifest variable models, a functional
equation will be identified (i.e., sufficient information is available) if
(a) the causes included explicitly in the functional egquation are
uncorrelated with the disturbance term of that equation; and (b) all such
causes have a unique, direct effect on the endogenous variable and are not
linearly dependent on other causes included explicitly in the equat:ion.‘;l
We will focus here on the assumption that causes are uncorrelated with
disturbances.

For the purpose of describing identification, we will regard the
manifest variables in Egs. 2.7a through 2.7¢ as hypothetical randam
variables defined on a hypothetical population. Now, in the functional
equation for X, (Eq. 2.7a), it is (theoretically) possible to solve for

(note, not estimate) the structural parameter 821

multiplying through By. 2.7a by x,, (b) taking expectations on the

directly by (a)

resulting equation, and, if justified, (c) solving for §21 algebraically
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(cf. Duncan, 1975). The first two steps are as follows:

Functional equation for X5t

X =Bkt 4 (2.12)

3 Multiplying through the equation by %t

5251 = E—lelél + _d_g_ﬁl

Taking expectations:

E(_x.g.l(.l ) = g_%l_g_(ilﬁl ) + E(ggﬁl )

i 93; Egi.o_lz + %2_]___ (2.13)

. 2 . .
where o, and & are covariances and ¢, 1s a varilance,.
—_.-.21 —(_12_]; =1

Equation 2.13 is often referred to as a "normal equation".

The values assumed by the randam variables X and X and therefore

F 1

g21 and 2_2’ may be regarded as "known" because the randam variables

can be operationalized as manifest variables. It is not possible to regard

gz as known, one obvious reason being that the random shock component

- of disturbances, which may be the only component, is by definition
; unmeasurable. Thus, 9_2, and therefore 93 17 are considered "unknowns".
=2 =

: B, is also unknown; we must solve for its value based on the known

21

‘f values of 9_’21;
present time because Eq. 2.13 has two unknowns (i.e., By and gy 1

! - —Z_

gf — or, one equation and two unknowns). This is an illustration of

and 213 in Eg. 2.13. This is not possible at the

underidentification, which means that sufficient infommation is not

available to obtain a unigue mathematical solution for —B-Zl‘ However, if
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we can assume that x, is unrelated to d., then ¢ = 0 and the
=1 =2 4,1
equation is identified. That is, we now have one unknown and one equation,

. . . _ 2 .
and E_z.l is easily solved for: 9—31_ =9,,/9". As shown in

Condition 5, 9.1 = 0 |if gz is comprised by random shocks
== <

exclusively, (or by random shocks and nonrelevant variables).

This logic may be generalized directly to the functional equations

3 =4

for x, and x, (Egqs. 2.7b and 2.7¢). Equation 2.7b is identified if

o = g = 0, and Bg. 2.7¢c is identified if o = o

RS Tar %2

=033 = 0. Furthemmore, algebraic derivation will show that lack of
=4

covariation between the causes in a functional equation and the disturbance of
that equation implies that the disturbance terms are themselves unrelated

(Duncan, 1975).

Lack of relationship among the disturbances of different equations
implies that the system of equations is identified. This is an important
consideration if all structural parameters from all equations are to be
estimated simultaneously. On the other hand, if the structural parameters
for each functional equation are to be estimated separately, then it is
possible to estimate parameters for the identified equations but not for
the underidentified equations. Finally, note that no assumption is

required for covariations of the form o it where i > j. For

=-a
example, 3(_1 may be related to g__z_ (gﬂzﬂ) without affecting
identification. -

Solutions and Estimates of Structural Parameters. Requirements for

identification vary as a function of the type of structural model (cf.

Fisher, 1966). We will return to the critical assumption that causes




75

included explicitly in a functional equation are unrelated to the

disturbance of that equation (and by implication all disturbances later in
the causal order). For the present, we regard this assumption as

satisfied. Thus, functional equations 2.7a through 2.7c are considered

identified. As shown above, this implies that the solution for P—Zl

321/212’ Solutions for the structural parameters in Eqs. 2.7b and

is

2.7c may be determined in a manner similar to that used to solve for B,

For example, it is possible to solve for _1_3_31 and B in Eq. 2.7b

=32
by (a) multiplying through Eg. 2.7b by X and then X0 thus

providing two equations; and (b) taking expectations on each of these

equations. The resulting nomal equations are:

2

D17 8% T B3% Y% (2.14)

Gan = BayGye + B 0.2 + O (2.15)

32 31|21 =322 da2 )
941 (Eq. 2.14) and S5 2 (Eq. 2.15) are assumed to be zero.

— e

Therefore, we have two unknowns (Bj; and By,) and two equations, and

it is possible to solve for B,. and B., using determinants. The

31 2 232
resulting solutions are:
- 2 _ 2.2 2
By = (9319 ~ 9,93,)/(9 %" ~ 9y 7) (2.16)
- 2 _ 2.2 2
Eig - (gé_zgl. 9_’2-1_9.'_3_];)/(2;. =2 ng ) (2.17)

Inspection of BEgs. 2.16 and 2.17 demonstrates that the solutions for

B3, and Bj, are the same as those that would have been obtained if we had

simply used Ordinary Least Squares (OLS) estimation to solve for 231 and

_8_32. That is, B and _E_532 have the formm of unstandardized

31

Plniiy S— —




regression weights., The same is true for §21 in By. 2.7a;

3-21/9'12 is the solution for unstandardized regression weight in a

= Qg = = (0, then B

bivariate relation. Finally if 92_14_1_ —g43 9;i 3 Byyv

By,r and B,y in B3. 2.7c have the form of unstandardized regression
w;.-ghts and ;y be solved by using OLS.

To summarize, given a recursive, cross-sectional design, if the
causes in a functional equation are unrelated to the disturbance of that
equation, then OLS may be used to solve for the values of the structural
parameters (note that OLS is applied separately to each equation). This
conclusion was predicated on hypothetical random variables in a
hypothetical population, but extends to operationalized designs, although
one must be mindful of the fact that disturbances can not be measured
directly. To illustrate, the causes and effects in functional equations
2.7a through 2.7¢ may be replaced with manifest variables defined on a
population(with boundaries specified) if the manifest variables satisfy
the assumptions discussed in Condition 8, It is also possible to employ
manifest variables in the algebra used to derive the variance and
covariances shown in Bys. 2.13 through 2.17, including covariances
between causes and disturbances and solutions of the structural
parameters., However, the covariances involving disturbances involve
relations between manifest variables and hypothetical variables that
cannot be measured directly. It follows, then, that these covariances can
not be solved for, nor estimated, in operationalized designs. In other
words, assumptions regarding covariances between causes and disturbances

are a theoretical concern. As shown shortly, an erroneous assumption

that a covariance between a manifest variable and a disturbance is zero
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has serious consequences for estimates of structural parameters.

Let us continue the illustration with the assumptions that the
functional equations are operationalized in a well-defined population of
subjects, with manifest variables that satisfy reasonably Condition 8 and
are unrelated to disturbances. An OLS regression equation may now be
-.ployed to represent a functional equation, where the values of the
unstandardized regression weights represent the values of the structural
parameters. Under these assumptions, the OLS error (residual) temm
represents accurately the disturbance term. However, this does not
suggest that one may relate the mai.ifest variables with the OLS error,
designated & to test the assumption that the manifest variables in a
functional e;uation are unrelated to the disturbance of that equation. By
definition, an e; will be unrelated to all manifest variables included
in an OLS equati;n. This point may appear trivial, but some researchers
have in fact calculated covariances (correlations) between manifest
variables and gi's to test the assumption that causcs are unrelated to
disturbances. gtill others have defined a disturbance as a form of
statistical residual (e.g., an OLS error term}, which is misleading, To
reiterate, a disturbance cannot be measured directly, and the covariation
(correlation) between a disturbance and manifest variables in a particular
oquation cannot be solved for, or estimated, directly. A statistical
residual, suwch as an e in OLS, represents (estlnates) a disturbance
only in the condition zhat the manifest variables in an equation are

theoretically unrelated to the disturbance of that equation.

Hopefully, we have made the point that while a functional equation

involving manifest variables and an OLS equation invelving manifest
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variables may assume identical fomms, it is only in the functional
equation that covariation between manifest variables and a disturbance has

meaning, and it is only when all such covariations are theoretically

zero that an OLS equation truly represents a functional equation. Let us
now proceed to the gquestion of estimation given that the OLS population
equation is an accurate representation of the functional equation. This
is a simple step because it is identical to the requirements for
estimating population unstandardized regression weights based on the
unstandardized regression weights derived in a sample. In general, the
unstandardized regression weights derived in a sample will be unbiased

estimates of population unstandardized weights, and therefore the

structural parameters, if the sample was obtained randomly from a

well-defined population in which errors (and by implication disturbances)

have a mean ~f zero and a constant variance (i.e., homoscedasticity). (we
are, of course, also assuning linearity, interval scales, and essentially
perfect reliability).

Let us presume that the assumptions above have been reasonably
satisfied. An illustration of the empirical estimation of structural
parameters by means of a structural equation analysis on a recursive model
is then straightforward. Consider, as an example, the hypothetical sample
data shown in Figure 2.8. Figure 2.8a is a replication of the structural
model in Figure 2.7, only here we have placed variances of the variables
in parantheses below the variables and covariances in parentheses above
the arrows connecting the variables. The sample OLS regression equations
(Egqs. 2.8a through 2.8c) in Figure 2.8b were used to estimate the values

of the structural parameters in the structural equations in Figure 2.7.
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That is, the unstandardized regression weights in Bqs. 2.8a through 2.8¢
(i.e., the E_i_j_) were used as estimates of the Eij. %n Bgs. 2.7a

through 2.7b. A separate OLS analysis was conducted for each of the OLS
regression equations. The results of the analyses are shown in Figure

2.8c. Given reasonable satisfaction of Conditions 1 through 8 and the

assumptions for OLS analysis, the E_ij_ are unbiased estimates of the

B. .
>

Insert Figure 2.8 about here

Given unbiased estimates, we are now in a position to confimm or
disconfirm the predictions that estimates of structural parameters

associated with causes in functional equations should be significantly

different from zero. This is accomplished by employing the conventional
significance test for unstandardized regression weights. [This test
requires the additional assumption that the population OLS error term (and
the disturbance) is distributed nommally.] If all estimated structural
parameters for a particular functional equation are significant, then all
predictions are confirmed in regard to our first test of confirmation. 1If
all predictions in all equations are confirmed, then the structural model
is regarded as being consistent with the data, again in regard to the
first test of confirmation. For example, given a large sample, the

éii in Figure 2.8c would be significant, which suggests that the
structural model in Figure 2.7 is confirmed in regard to the first test of

confirmation. However, if one or more estimated structural parameters is

not significant, then not only are the predictions associated with those




estimates disconfirmed, but the structural model is regarded as
inconsistent with the data.

In sum, simple multiple regression may be used to test predictions
that estimated structural parameters (unstandardized regression weights)
associated with causes are significant. If the estimated parameters are
significant in each and every statistical (OLS) equation, then, based on
the first test of confimmation/disconfirmation, a structural model is
confimed. Confimmation implies that the structural model is consistent
with the data. If one or more estimated structural parameters is not
significant, then the model is disconfirmed, implying that the model is
not consistent with the data. Now, given the consensus that confirmatory
analysis should be conducted on large samples, it follows that the
significance tests for estimated structural parameters are powerful,
Consequently, unstandardized regression weights of rather trivial
magnitudes are likely to be significant. This suggests that the present
test is not likely to disconfirm many predictions, or, it is weighted in
favor of confirming predictions. As we shall see in Condition 10,
precisely the opposite problem occurs in our second test of
confirmation/disconfirmation.

Theory trimming. It is, of course, possible for unstandardized

regression weights to be nonsignificant, even with large samples. How
serious is this source of disconfirmation? The answer to this question
depends on the model and the salience of the causal hypothesis underlying
the structural parameter. For example, in Figures 2.7 and 2.8, it may be

critical to the theory underlying the model that the estimate of §43,

namely :8_43, be significant. Consequently, a nonsignificant §43,

80
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or a significant E_@_

the other hand, a nonsignificant, or significant but low,

of trivial magnitude, may be a serious blow. On

=N

be a serious theoretical blow. Thus, the particular source of

may not

disconfirmation of predictions (i.e.,, the causal hypotheses involved) may
vary from rather minor to drastic. If confirmation of a prediction is of

particular importance to a model, and the prediction is disconfirmed, then

one may decide that there is little reason to proceed with additional
analyses. We recommend that they do proceed in order to test fully all of
the predictions of the model.

If the source of disconfirmation is not of major importance, then the
investigator may consider "theory trimming". Theory trimming consists of
deleting causal connections from a structural model (Heise, 1969), which

is to say deleting a cause and its associated structural parameter from a

functional equation. It is extremely important to note that theory

DU

trimming is a form of exploratory, and not confirmatory, analysis. That

is, the investigator is now making decisions based on data, and is no

longer confimming/disconfiming a priori theory. The crucial implication
of this point is that the structural parameters for which trimming might
be indicated in this first test of confirmation/disconfirmation should
never be used to test confimmation/disconfirmation in the second test
(Cordition 10). The reasoning is simple; the second test of
confimation/disconfirmation assesses whether estimated structural ]
parameters that are predicted to be zero are in fact not significantly
different than zero. If, after looking at the data, one knows that an
estimated parameter is essentially zero, then a test that this same F

parameter is predicted to be zero is nonsense.

{
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In conclusion, theory trimming of minor sources of disconfimmation is
acceptable as long as one remembers that, following trimming, one is no
longer dealing with an a priori, theoretical model. This leaves two
avenues for further analysis, specifically (1) test the trimmed model in a
new sample, or (2) do not trim prior to conducting the second test of
confimation/disconfirmation discussed in Condition 10. One may theory
trim after all analyses are conducted and interpreted, and the researcher

is proposing a revised theoretical model for future research.

Standardized versus unstandardized manifest variables

Up to now we have treated manifest variables in deviation form, one
result being that the OLS estimates of structural parameters are
unstandardized regression weights. It is also possible to treat the
manifest variables in standardized form, in which case the values on the
variables are standard scores (i.e., z = (X-w /g_) , and the variables
have a mean of zero and a standard deviation of 1.0. When the variables
are in standardized fomm, the structural parameters are referred to as

standardized structural parameters, or path coefficients. The estimates

of path coefficients provided by OLS are "standardized regression
weights", or beta weights. Moreover, it is customary to refer to the
structural model as a path model, the functional equations as path

equations, and the confimmatory analysis as a path analysis. A full

recursive path model and its corresponding set of path equations are shown

in rigure 2.9, where 2;s are used to designate standard scores, and

(i>j) designate path coefficients. It is customary to employ the

EBij
symbol "gi” to designate disturbance terms in path models and path
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equations.,

Insert Figure 2.9 about here

There are advantages and disadvantages associated with both path
coefficients and (unstandardized) structural parameters (cf. Tukey, 1964;
Wright, 1960). The advantages of path coefficients are as follows:

(1) Algebraic and statistical manipulations are simplified.

{2) Path coefficients are based on readily interpretable

correlation coefficients.

(3) Path coefficients themselves are readily interpretable

inasmuch as all variables are based on the same metric.

(4) Path analysis provides simplified expressions for

decamposing correlations into functions of path coefficients.s

Structural parameters typically have none of the advantages above
because the variables are based on different metrics (see Figure 2.8) and
variance~covariance matrices replace correlation matrices. However,
structural parameters have the advantage that they can be compared directly
across different populations (for the same variables) or for the same
population over time. We have chosen to illustrate the formmer case becausz
we wish to demonstrate how the subgrouping moderator approach can be
applied in confimmatory analysis. By doing so, our intention is to
discourage carrying over into confimmatory analysis the practice among some
investigators of conducting subgrouping moderator analysis on standardized

regression weights (beta-weights, correlation coefficients in the bivariate

case) .
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Consider a linear bivariate model in which both variables (x, and

52) have been measured in each of two specified populations (e.qg.,

males and females). The path equation in each population is 2z, =

32131 + Ysi the corresponding structural equation in each population

is 5_2_ = 5.2_ + —B-_Z_l_l(-l + 4. The structural equation is presented

in raw score form, where _@2

B,) may be thought of as the slope of a regression line, where the

is the intercept. The structural parameter

slope reflects the amount of change in X in units of _)_(2, brought

2!
about by a unit of change in _)gl. This suggests that the structural

parameter reflects the concrete contribution that 51 makes directly

to 52 in 3(_2 units, If the same metrics are employed across the two

populations, then the contribution that X makes to X, can be

compared across the populations in an absolute sense; that is, in terms

of units of 52

The path—coefficient B, may also be thought of as the slope of a
regression line, However, E;e path coefficient is an abstract measure
of the slope because it is based on an abstract scale that varies as a
function of a ratio of standard deviation units within a particular

population. That |is, EZl(Ox /ox), which means that

2 %%

path coefficients are unstandardized regression weights adjusted by a
ratio of the standard deviations in each population. Thus, a comparison
of path coefficients is in actuality a comparison of abstract scales, each
adjusted for population idiosyncrasies in standard deviations. This
suggests that while the concrete contribution (causal effect) indicated by

_§21 may remain invariant across populations, the path coefficients may

vary simply because the standard deviations of 51 and/or X,

vary

R i T o= s e mermasa
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across populations. Thus, the general rule is that path coefficients
should not be employed in the comparison of causal effects for different
populations, or in the comparison of causal effects in the same population
over time (cf. Blalock, 1967, 1968, 1969; Spaeth, 1975; Tukey, 1964;
Wiley & wiley, 1971).

On the other hand, path analysis has the advantages discussed earlier.
When research is focused on a specific population using cross—sectional
data collected during an equilibriumn-type condition, the advantages may
outweigh the disadvantages (Wright, 1960). For our purposes, the
opportunity to simplify statistical derivations is important, and thus a

path analysis paradigm is employed frequently in the remaining discussion.

Specification Error Due to an Unmeasured Relevant Cause

Specification error is a general term that refers to errors
(misspecifications) in the form of a structural model and its accompanying
functional equations, or in the operationalization of variables. In this
discussion we will demonstrate a specification error of particular concern
to psychologists, namely unmeasured relevant causes. We will also return
to the question of relations betv'veen causes and disturbances, the resulting
underidentification, and the consequences of proceeding with OLS estimation
given violation of conditions for confirmatory analysis.

In the presentation of Condition 5, we demonstrated that an unmeasured
relevant cause would result in a theoretical covariation between causes
included explicitly in a functional equation and the disturbance term of
that equation (see Figure 2.4 and Bg. 2.11). We also demonstrated that

covariation between a measured cause and a disturbance implies that a

functional equation is not self-contained. Finally, we noted that

———— < o
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psychologists have paid scant attention to the need for self-contained

functional equations, although increased attention is not likely to
solve this problem completely because all relevant causes of an effect are
unlikely to be known. Nevertheless, it is possible to reduce substantially
the influence of unmeasured relevant causes, or what we will refer to as
the "unmeasured variables problem", by (a) recognizing that the problem
exists, (b) judging whether sufficient information has accumulated to
justify a confirmatory analysis, and (c) including all known relevant
causes in the appropriate functional equations. Given (a) and assuming an
affirmative answer to (b), the operational question is (c), namely have
known relevant causes been omitted from one or more functional equations.
As we shall see, this question consists of postulating the degree to which
an unmeasured variables problem is believed to lead to bias in estimates of
structural parameters.

within psychology, a primary cause of an unmeasured variables problem
appears to be the failure to recognize that "focused" theoretical models
are not amenable to confimmatory analysis. To illustrate, it is frequently
the case that psychological models are designed around sets of focused
causal variables, where by "focused" we mean causes that are of interest to
an investigator(s). Lleader behaviors are one example. In contrast, the
endogenous variables are typically less focused, and include such things as
attrition, overall satisfaction, and performmance. ne of the certain wayc
to create a serious unmeasured variables problem is to analyze focused
causal variables, such as leader behaviors, in relation to a global
endogenous variable, such as overall job satisfaction. The latter includes

a plethora of additional causal influences, such as pay, working
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corditions, opportunities for advancement, job stability, and so forth.

By way of simple illustration, Figure 2.10a displays a self-contained
path model in which the manifest exogenous variable z is a cause of
the two endogenous variables, 2, and 23. 2, is—also a cause of 23.
The Y; (u, and u,) are disturbance zerms, and— are—assuned to be B
cmpr—ised—exclus;vely by random shocks (RS). (It is assumed that, with the
exception of an unmeasured variables problem in Figure 2.10b, all conditions
for confimatory analysis have been satisfied.). Population path equations,
expectations, and nommal eqguations for Model 2.10a are shown in the upper

portion of Figure 2.11. Note that the functional equations are identified;

the nomal equation for z, (Eg. 2.lla) has one equation and one unknown

{i.e., and the nomal equations for 23 (Egqs. 2.1lb and

2.11lc) have two unknowns in two equations. The correlations are assumed to
be known, and are indicated by "'E_ii". [These are population correlations;
the conventional p is not used because it is easy to confuse o

(population correlation) with p (path coefficient) .]

Insert Figures 2.10 and 2.11 about here

Figure 2.10b illustrates a condition in which the u; are not

canprised by RS camponents exclusively. Rather, an unmeasured causal

variable, a, is present in both uy temms. The variable a is

regarded as a relevant cause of both 2, and 2., which includes

relationships with z {indicated by the curved, double-headed arrows

from a to El) . Moreover, because a appears in both disturbance

terms (i.e., the curved arrow between a for 2,and a for z,), the
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disturbances are also correlated. (The a's need not be the same for this
to occur; different but correlated a's for 2z, and 24 also lead to

correlated disturbances.)

Path equations, expectations, and normal equations for Figure 2.10b
are shown in the lower portion of Figure 2.11. As shown in the nommal
equation for 2, (Eg. 2.11d) and the normal equations for 23 (Egs.
2.11e and 2.11;) , the equations are underidentified because—the unmeasur ed
a covaries with both z and 2z, (i.e., Eg. 2.11d has two
unknowns, and Egs. 2.lle ;nd 2.11f_contain four unknowns——the relations
between a and the 2's are represented as covariances because if _d_i =

RS + a,, and if d; is in standardized fomm, then a, cannot be in

standardized fomm). Consequently, OLS can not be used to solve for the
path coefficients in the population or to estimate the coefficients in a
sample.

Now, consider the case that the path model displayed in Figure 2.10b
is operable, but that an investigator assumes that u, and U, are
canprised by RS components exclusively. It is possigle to :se OLS to
solve for the path coefficients; however, the path coefficients will be
biased. To illustrate the bias, a false model (a is not included in the
path equation) is campared to a true model (a is included in the path
equation) in order to determine the consequences of employing the false
model to solve for the path coefficient(s) (Duncan, 1975; James, 1980). A
canparison of the false and true models for the z, equation is

presented in Figure 2.12. The "true" path coefficients are designated by

primes (e.g., p;, and p,.).
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Insert Figure 2.12 about here

As shown in Eq. 2.12a, Poy in the false model differs from Eél in
the true model by a factor of 2;2 r_l-. This implies that By will be
biased if both E.:Za and r_, are greater than zero. In other words, if the

— 2a —al

unmeasured a is (a) a cause of z,

Py will be biased. If we disregard suppressors, then the bias will result

and (b) correlated with 2y then

in a By that is too large; this is a direct result of failure to control for

———

the effects of a in solving for P,y in the false model. The ramification
of this bias is that causal influ;r_lce that rightfully belongs to a is
instead attributed to 2.

Let us now address—the guestion of the degree to which B, may be
biased. If either Eia or _[:al is zero, or approximately zero,_—then little
or no bias will exis:_in 22_1—'— This suggests that bias will not cccur if an
unmeasured variable is in _f-;ct a cause of the endogenous variable but is
unrelated to the measured causes of that same variable. (Note that the
unmeasured cause is not a relevant cause if it is unrelated to measured
causes.) Consequently, one need not assume that all major causes of an

endogenous variable have been measured. Rather, an unmeasured cause must

also be related to a measured cause before bias will ensue.

We must also entertain the fact that there are degrees of causation;
the magnitude of -E;a might be anywhere on a continuum from low, to
moderate, to high. Similarly, the magnitude of -Eal may vary from zero,

or approximately so, to low, moderate, or high. Thus, the product term

»

Pralal

can assume many values, only some of which result in serious

Al A

|




bias of _921. From a pragmatic standpoint, we shall assume that the

permutations most likely to lead to serious bias are high-high,
moderate-high, high-moderate, and moderate-moderate. Moreover, an
unmeasured variable will not result in bias if this variable is highly
correlated with a measured cause. This point is easily demonstrated in the

"true" equation for z., which is presented below with appropriate

controls indicated for the path coefficients.

_2_2 = Py .24 + P_Z_é'li + E_z_

The path coefficient for a is theoretically equal to, or

approximately equal to, zero if a and z, are correlated highly (e.g.,

.95) . Consequently, there is no reason to include a in the 2, equation

because it is essentially redundant with, or linearly dependent on, 2z

Note also that inclusion of a in the 2, equation would result in a
multicollinearity problan if OLS were used to solve for the path coefficients
Thus, with a unmeasured, essentially no bias will ensue for the Py path
coefficient (i.e., B_%‘Z'l%_l = 0 because E@'l = (0). Here again, a

would not be an unmeasured relevant cause if it is linearly dependent on

the causes already included in an equation.

In sum, an unmeasured variable must be a relevant cause before it will
lead to bias in the solutions (estimates) of path coefficients for measured
causes, In particular, it must have at least a moderate effect on the
endogenous variable after controls have been effected for measured causes,

and it must have at least a moderate correlation with one or more measured

causes without being linearly dependent on the measured causes. The




.
AD-A11% 373  OEORSIA INST OF TECH ATLANTA SCHOOL OF PSYCHOLOSY F/¢ $/10 AN
cououxon FOR cownm'mv mn.vsu o CAUSAL ‘INFERENCE , (1s)
JAMES: S'A MUALAIK: J naoon-oo-c-ous
UNCLASSISIED

l




91

implication of these points is that if an unmeasured causal variable is not
a relevant cause, then one does not have a serious unmeasured variables
problem,

If, however, the unmeasured variable is a relevant cause, then as
shown in Figure 2.12, bias will ensue in the solution (estimate) of a path
coefficient(s). This point is illustrated empirically in Figure 2.13.

Figure 2.13a is a self-contained or true model with relevant causes z; and

a (in standardized fomm) in the path equation for z,. Hypothetical

population correlations associated with the relation between the two

exogenous variables (i.e., i< .50) and the causal connections are

——

presented in parentheses. Solutions for the path coefficients in the true
model, designated by a prime, were obtained by OLS; the path coefficients (beta

weights) were: = .50 and Eéa = .40. A false model with a

fa
unmeasured is shown in Figure 2.13b. The OLS solution for By is .70, or

simply Ly The bias in Py resulting from the failure to include a

in the path equation for z, is shown in Figure 2.13c. The bias is equal to

2

(.40) (.50) = .20.

Insert Figure 2.13 about here

The discussion above transfers directly to more camplex equations
involving multiple causes, although, given an unmeasured relevant cause,
the direction of bias may be either positive or negative. Nevertheless,

the unmeasured cause must be a relevant cause before serious bias will
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ensue in the solutions (estimates) of path coefficients. We will forego a
statistical demonstration of this point. Rather, we shall proceed to
sunmarize the salient points from the preceding discussion in the form of

"decision steps". The decision steps, presented by James (1980), are

designed to assist investigators in making a judgment of whether an
unmeasured variables problem is of sufficient seriousness to preclude the
3 use of path analysis (or other fomms of confirmatory analysis). The

E decision steps are prefaced on the logic that while it is unrealistic to

] expect obviation of the unmeasured variables problem in research, it is
possible to attempt to minimize bias in path coefficients (structural
parameters) to the point that the bias is within "tolerable limits" for

£ research purposes. It is also prefaced on the logic that investigators
will exercise "good judgment” in deciding initially that enough information
has accunulated to justify confimmatory analysis, which is a pragmatic but
defensible reason for focusing on known causes. (We address this issue
further in Section 3.)

1 The decision steps are presented in Figure 2.,14. The steps are
written from the standpoint of designing a cross-sectional, manifest
variable analysis involving recursive causal connections, although the

4 rationale generally transfers to other types of designs. Furthemore, the
steps apply to one endogenous variable, and should be applied to each

[ endogenous variable in a structural model.

E Insert Figure 2,14 about here

The decision steps, while subjective, are the most help that we can
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give reserchers who are using cross-sectional designs with manifest (or
latent) variables. However, with longitudinal designs, it is possible to

minimize statistically the bias in estimates of structural parameters

resulting from unmeasured relevant causes, Of particular importance is
time series analysis cambined with generalized differencing and general ized
least squares (cf. James & Singh, 1978; Johnston, 1972; Ostrom, 1978;
Pindyck & Rubinfeld, 1976). The logic of these methods is that if a
disturbance temm is estimated for the same endogenous variable(s) at each
of several times of measurement, it is possible to estimate relationships
among the disturbance termms. 1f the disturbance terms are camprised by
randam shocks exclusively, then these relationships will be zero, or
approximately so. If, however, ummeasured causes (relevant and nonrelevant)
are contained in the estimated disturbance terms, then it follows that the
unmeasured causes will correlate with themselves over time because they
are, by definition, stable. These correlations are referred to as
autocorrelations, or serial correlations, among the disturbance terms.
Statistical procedures can be used to remove the serial correlation from
the estimated disturbance temms, and, in the process, obviate relationships
between measured causes and disturbances. The result is that consistent
estimates of structural parameters may be obtained even though one may have
a serious unmeasured variables problam.

Summary. Considerable territory has been covered in presenting
Condition 9, and there is more to come in the discussion of latent
variables. Nevertheless, with a minimum of statistical development we have
attempted to make three points. First, predictions regarding estimates of

structural parameters (standardized or unstandardized) must be confirmed if
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a structural model is to be consistent with empirical data. This is the
first test of confirmation/disconfimmation. Second, erroneous conclusions
may be drawn regarding confimmation/disconfirmation of predictions if the
estimates of structural parameters are biased. Third, the degree of bias
in estimates of structural parameters is a function of specification errors
brought about by the failure to satisfy reasonably one or more of the
preceding eight conditions. An illustration was provided for unmeasured
relevant causes (a violation of the sel f-contaimnment condition). Aan
illustration of the effects of randam measurement error in manifest
variables is presented in Section 4. Illustrations of the effects of
violations of other conditions, such as specification errors in causal
order, causal direction, causal interval, and operationalization of
variables, are furnished in the confirmatory literature (cf. Billings &
Wroten, 1978; Bohrnstedt & Carter, 1971; Cook & Campbell, 1976; Darlington
& Rom, 1972; Deegan, 1974; Goldberger & Duncan, 1973; Griffin, 1977; Heise,
1969; Werts & Linn, 1971; Young, 1977; Cliff, 1980).

Condition 10: Bmpirical Confimmation of Predictions II: Fit Between

Structural Model and Empirical Data

The estimation of structural parameters in Condition 9 is based
(conditional) on the assumption that the structural model, as proposed
originally, is valid. It is, however, quite possible for all of the
estimated parameters to be significantly different from zero when the
structural model is invalid. To illustrate, consider the two path models
and their accampanying path equations in Figure 2.15. Model 2.15a predicts
that similarity of interests (z;) leads to felt attraction (z,), which

in turn leads to a higher probability to form a friendship (__2_3). This is a

asiide ‘Sablitinde’ Nikin




effect is not hypothesized.

1 =3

simple chain model in which a direct z.+2

Rather, the effect of 2z onz is indirect, which is to say that the

3

effect of similarity of interests on friendship is mediated by the
intervening process of experienced attraction. Model 2.15b predicts that

z 2 3 1

1 -2 3 1 2

are relevant causes of 23 (2z) also affects z5 indirectly through

affects both 2z, and 2z, directly, where both 2z, and z

z,). If Model 2.15a were tested in Condition 9, when in fact Model 2.15b

i; the true model, then the estimate of the path coefficient for 2z in K.
2.15b (i.e., 232) would be biased. This would occur even though e;timates

of B3 in B—q— 2.15a and B3y in By. 2.15b were significant. The
ratio;ajle here is that failure_:.o include a measured relevant cause in a
functional equation (i.e., 23 in Bg. 2.15b) has the same implications as
failure to include an mmeas:red relevant cause (i.e., lack of self— contaimment
and biased parameter estimates). However, unlike unmeasured relevant causes,

it is possible to test empirically for direct causal effects for measured

causes. This is a form of goodness of fit test, and brings us to the second

test of confirmation/disconfimmation.

Insert Figure 2.15 about here

The key condition required for the second test of confirmation/
disconfimmation is that no direct causal connection is hypothesized
between at least one causal variable and an endogenous variable in the
original structural model. This is analogous to hypothesizing that the

value of the structural parameter relating these two variables is zero.
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For example, in Figure 2.15a, there is no direct arrow between 2 and

Z3i this means that B3y is hypothesized to be equal to zero. Thus, the

path equation for 2, in Figure 2.15a (Eq. 2.15b) may be thought of as

+ ug. It cannot be

BT Eu0E Y Rypfy o T Ryl

emphasized strongly enough that setting structural parameters equal to zero

must be based on theoretical grounds (i.e., accampanied by a theoretical

rationale) and proposed as part of the original structural model.

To continue the illustration, the hypothesis that B3 = 0 in Figure
2.15a and Bg. 2.15b leads directly to the prediction t:h-a: the OLS estimate of
B3y should not differ significantly from zero. This hypothesis can be
t;;ted by estimating Py in By. 2.15d, which is a test of the goodness of
fit of model 2.15a. If the estimate of Py, is significant, then model
2.15a is disconfirmed and model 2.15b is :viable (but untestable, as

explained below) possibility. This formm of test is referred to as the

omitted parameter test of goodness of fit, and is described later in

this section. A test that accampl ishes essentially the same purpose, but

in a more subtle manner, is to demonstrate that the correlation between z

and z, is equal to the product of the paths that link, indirectly, z

to 53, or Iy, = Py1P3y¢ in Figure 2.15a. This is referred to as

the reproduced correlation test. The reproduced correlation test, or

reproduced variance-covariance test if variables are not standardized, is
prominent in theoretical discussions of confirmatory analysis, and is
described prior to the omitted parameter test. It is noteworthy that the
reproduced correlation (variance-covariance) test is not often used in
manifest variable designs because significance tests are not available if

OLS is used to estimate structural parameters (Kenny, 1979). On the other
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hand, it is, at the present time, the method of choice in latent variable

analysis, where significance tests do exist.

The objectives of this section are (a) to describe the reproduced
correlation test and the omitted parameter test, (b) to demonstrate the
relations between the tests, and (c) to combine the two tests of
confirmation/disconfirmation (i.e., Condition 9 and Condition 10). Path
models based on a cross-sectional design are used to illustrate the
process. Initial derivations are based on population data, although the
processes are the same for the sample data. We assume that Conditions 1
through 8 and the assumptions required for OLS have been resonably

satisfied.

Reproduced Correlation Test

We begin with the path model shown in Figure 2.16 (which is the same
as Figure 2.9). The key to the reprodgced correlation test is to decampose
correlations among variables in a structural model into functions of path
coefficients and, if necessary, unanalyzed correlations among exogenous
variables (the latter case is not treated in our examples). Aside from the
correlation of a variable with itself, there are six population correlations
associated with Figure 2.16; namely 5_2}_, £§}_r 512_' LY 54—2_, and
43 (the order of subscripts reflects causal priorities, alt;t.\gh this is

arbitrary) . The decomposition may be accampl ished by the long method using
expectations (cf. Duncan, 1975) or by the short method using the following

equation (Namboodiri et al., 1975):




Ryl (2.18)

[x

B r..
‘ =i

i represents the endogenous variable (i > k,j), ] refers to the
causal variable, and k begins with i~1 and ranges down to 1 (i..e., El) .

The short method is elhployed below, where correlations of the fom r..

=31
(k = j) are deleted because they are equal to 1.0.
Insert Figure 2.16 about Here
Direct application of Eq. 2.18 provides:
53'1_ = E_z_l_ (2.19)
31 = By * By (2.20
Lo 7 Bysfyy * Baofyy * By (2.22)
L2 = Bazf3p * Byp * Barfyo (2.23
Ta3 ™ Bgy * Bypfp3 * By Ly (2.24)

Egs. 2.19 through 2.24 do not represent a full decomposition; they are

the nomal equations used to solve for the path coefficients in Eqs. 2.16a
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through 2.16c in Figure 2.16. Dotted lines separate the nommal equations
associated with each path equation. As discussed in regard to
identification in Condition 9, it is possible to compute the six
correlations directly from the data and thus the coirrelations are "known
values". There are also six unknown path coefficients. When the number of
known values (normal equations) for each path equation is equal to the
number of unknown values, each path equation is referred to as just

identified or exactly identified. If all equations are just identified,

then the path model is said to be just identified (exactly identified).
This means that <;ne has a sufficient number of knowns (six correlations) to
estimate the number of unknowns (six path coefficients) in the path model.
In just identified models, all of the known information is employed to
calculate the unknown path coefficients.

Assuming that OLS has justifiably been used to solve for the path
coefficients (i.e., the ‘Eii and population OLS beta-weights are
equivalent) , we can now fully decampose the correlations by replacing
the correlations on the right side of Bgs. 2.19 through 2.24 with their
decampositions from earlier equations. For erample, Lo in Bg. 2.20 and
L3P in BEgq. 2.21 are equal to By (Eq. 2.19). Applyi; this process

to the remaining equations results in the following set of decamposed

correlations.
Eg = Bg; (2.25)
531 7 PPy + By (2.26)
I3z * By * B3Ry (2.27)
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oy 7 BasRagfy * BaBy T Bagay T By (2-28)
Y42 = By3P3z * By3P3iPy) * By * ByiPpy (2.29)
L43 7 By3 ¥ ByoR3p * ByoP31Byy * PiPyoPoy + ByiP3) (2.30)

The objective of these "decomposition equations” is to see if one can
reproduce the correlations with functions of path coefficients. This is
clearly circular for these equations. That is, if all the known
information (correlations) is used to solve for the unknown information
(path coefficients) in the nomal equations (Egs. 2.19 through 2.24), then
it should be possible to reverse the process and reproduce the correlations
exactly by functions of the path coefficients., This is precisely the case;
Egs. 2.25 throuwgh 2.30 will reproduce exactly the original six
correlations used to solve for the path coefficients in Egs. 2.19 through
2.24. Thus, in just identified models, goodness of fit tests are

inappropriate inasmuch as solutions of path coefficients and reproduction

of correlations are circular or mirror reflections of the same statistical
process.,

It is possible to break out of this circular process .by omitting one
or more causal connections from the path model and path equations. This is
accompl ished by assuming a priori that at least one path coefficient is
equal to =zero; that 1is, a z. does not cause a z (i > Jj) directly.

il 1
For example, in Figure 2.16, suppose it is assumed that 2, does not

cause z, directly. Mathematically this is equivalent to assuming that

2_4_1; = 0, The new path equation for Eﬁ is now

L
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Zy = ByZ) tRgZy t Yy (2.31)
The effects of this assumption may be demonstrated with the normal
equations (cf. Duncan, 1975), although it is straightforward to deal
directly with the decomposition equations. To see the results of the
assumption that By3 = 0, we will omit all terms in Egs. 2.25 through
2.30 that involve Py3- The temms to be omitted have a line crossed
through them.
-r‘Z,l_ = Bg (2.32)
Eél = EEEEL + B3y (2.33)
(2.34)

f32 = B3 + B31Po)

Iy* = RaaBys) *.RaiP3) * RasRy * By (2.35)

f47" = BuRT * RigRar?h * Bz * BBy (2.36)

L' BTt BuPy * BuPufy * Ryl * Bty 2.3

Of initial importance is the fact that there are still six known
correlations. However, only five unknowns now exist (i.e., P43 is
considered known and eq\ﬁtéd to zero). When more knowns exist than

unknowns in the norgal and decamposition equations, the model is said

to be overiden@ified. (Technically, the z, path equation is

overidentified because zy was deleted from By. 2.31).

Overidentification has a nunber of technical implications; however, our

concern here is with the substantive outcame. This outcame is that (a) any

correlation in the set of six correlations represented by Egs. 2.32




103
equation (Eq. 2.17c). The decomposition equations are shown in Figure
2.17c. All temms involving Bsy have a line crossed throuwgh them (i.e., are

omitted), which results in being subject to an

It Lyt I3t
overidentifying restriction. Two different hypothetical, population
correlation matrices for the model in Figure 2.17a are shown in Figure 2.17d.
Given that all conditions and assumptions for confirmatory analysis and OLS
have been reasonably satisfied, the population OLS solutions of the path
coefficients for each of these correlation matrices are reported in Figure

2.17e. (Only the correlations differ; the path model is the same for both

correlation matrices). The observed correlations subject to an overidentifying

restriction and the reproduced correlations, based on the decamposition
equations in Figure 2.17c, are presented in Figure 2.17f. For matrix A, the
observed and reproduced correlations are identical, which suggests that (a)
By T 0; (b) the path model in Figure 2.17a has a good fit with the data —
t;t is, the correlations in Matrix A; and (c) the path model is confirmed in
regard to the second test of confirmation / disconfirmation. For Matrix B,
however, discrepancies exist between the observed and reproduced correlations,
These results connote that (a) Py is not equal to zero and the terms

crossed out of the deccmposition:quations for .54_i*' 542*, 54_3-* should

have been retained; (b) the path model in Figure 2.l7a—d-oes not have a good fit
with the data represented by Matrix B; and (c) the path model is

disconfirmed.

Insert Figure 2.17 about Here

To summarize, the a priori prediction that By = 0 in Figure 2.17a
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through 2.37 that has a temm crossed out (i.e., Bgs. 2.35, 2.36, and 2.37)
is (b) not constrained to be exactly reproduced by the path coefficients.

In more specific temms, 541*, 542*, and * are subject to an

©rr Ba3
(sometimes referred to as implied) correlations resulting from Bys. 2.35 {

43

overidentifying restriction (i = 0), and the reproduced

through 2.37 may differ from their observed counterparts ('Eﬂl' Li%'
)

I,y Asterisks are used to designate correlations subject to

——

overidentifying restrictions.

The hypothesis that Py3 = 0 leads to the predictions that 541*,

I, *, and _1:43* will be equal to their observed counterparts, namely
541, _1:42, Ly3e Consequently, if the reproduced correlations are

equal to their observed counterparts, then the predictions are confirmed.
This implies that 343 is equal to zero. Suppose, however, that the a
priori hypothesis _t:hat Pyy = 0 is wrong, and Py3 > 0. In this
situation, 541* # LR, 542*: LIPY and _r43* #_1'_43. For‘-
example, if ;l cor:;lat_i;ns ang—path co;ficie;t:s are positive, then 541*
will underestimate 54_1‘ by a value equal to 2_4_322231_ + Eﬁgﬂ; —
the termms deleted from Eg. 2.35. Thus, the goodness of fit test leads to
disconfirmation of the predictions evolving from a model with Pg3 = 0. The
impl ication of disconfimation is that 2y has a direct effect on_-_g_‘;.

We will now demonstrate the above r;tionale with an enpirical_
illustration, using the prediction that E_A;l_ = 0 in place of 34_3. = 0.
Figure 2.17 presents a path model (Figure 2.17a) and path equations
(Figure 2.17b) that are similar to the model and equations in Figure 2,16,
except for the fact that By is predicted to be equal to zero in Figure

2.17a. Consequently the Byy2, tem is deleted from the 2, path
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resulted in an overidentification condition in which three correlations
were subject to an overidentifying restriction. In other words, three
reproduced correlations were not constrained to be equal to their observed

counterparts, although they were predicted to be equal to their observed

counterparts. The correlations subject to the overidentifying restriction
may be ascertained by deriving the decamposition equations using Eq. 2.18
for a just identified model (i.e., all paths included) , and then crossing
out those temms in the decomposition equations that involve a path
coefficient assuned to be equal to zero. Reproduced correlations may then
be calculated and canpared to observed correlations. Divergence of
reproduced from observed correlations disconfirms predictions regarding the
reproduced correlations and implies that a priori hypotheses are
incorrect. Reproduced correlations equal to observed correlations denote
confimation of predictions and imply that the a priori hypotheses may be
valid.

Note that only correlations subject to overidentifying restrictions
should enter into goodness of fit tests. It would make no sense whatever
in Fiqure 2.17 as a basis for testing

to use or r

T21' 31 S 32
goodness of fit inasmuch as these correlations will be reproduced exactly.
Moreover, the assumption that B_ij. = 0 must be made a priori. To
reiterate a point, consider a scenario in which a just identified model is
used to calculate the values of all path coefficients, and B4 is

found equal to zero. By is then deleted from the model, and the model

is regarded as overidentified. A goodness of fit test of predictions

evolving from By = 0 could not miss because one would know that the

calcul ated Py = 0. Thus, the reproduced correlations would equal




105
the observed correlations. This is obviously not a legitimate goodness of
fit test, and the time has arrived for authors and reviewers to recognize
that the researcher must test the goodness of fit of the model he or she
begins with and not the model obtained by theory trimming (i.e., after
seeing the data).

The preceding discussion was based on population values. With sample
values, goodness of fit tests are designed to ascertain whether reproduced
correlations subject to overidentifying restrictions are different than
their observed counterparts. [A method of estimation other than OLS
(e.g., maximum likelihood) must be used to estimate structural parameters
if a significance test is desired in the comparison of the reproduced and
observed correlations.] However, the camparison between reproduced and
observed correlations is often not recommended for actual practice with
manifest variable designs because (a) it is complex statistically, (b} it
is difficult to interpret when more than one path is omitted from a model,
and most importantly (c) the omitted parameter test is a more direct method
that is easier both to compute and to interpret (cf. Duncan, 1975;
Namboodiri et al., 1975). We illustrate the difficulty of interpretation
issue below, and then demonstrate how it is possible to address the same

issue with the omitted parameter test in a more direct manner.

Consider the model in Figure 2.18, which predicts that both 332

and By are equal to zero. The path equations are as follows:

22 = 225—]; + 22 (2.38)

E_:i = Eﬁ?‘l + E} (2.39)
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2y = Byo%p YB3tz tt Yy (2.40)

Insert Figure 2.18 about here

If the model were just identified, the decomposition equations would be
the same as Kgs. 2.25 throuwh 2.30. These equations are shown below, where
all tems involving Py, and By have been crossed out. With these

terms omitted, there are six known correlations and four unknown path

coefficients. Thus, the model is overidentified. Once the four path
1 coefficients are solved for in the population (estimated in a sample), all

1 correlations except r,, are shown to be subject to an overidentifying

. restriction.
1
217 By (2.41)
511_* ) B)_%EZ/A * By (2.42)
512_* =/9_9_/+ B31B2) (2.43)
!
* =
I4" = BapRes * BygPy * ByoRy * Ber (2.44)

f42" " Baf% * RaRaRo * By " Banfp (2.45)
Ig3* = By3 * PaoPT * BasR3iPy * Bulss®h * B3 (2.46)

Suppose all ‘Eii* are equivalent to their observed counterparts.

This denotes that predictions regarding reproduced correlations are

e

confirmed, and implies that Py = By = 0. Now, suppose _:'_31* =
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* = * * *
53_1 and _1'_3_2 53—2., but _:'4—1 ’ 54_2_ , and _1:4_3 are not equal to
their observed counterparts. This pattern suggests that (a) E}g is equal
. . X x i .
to 2zero, and (b) Bﬂ is different from zero. That is, the —r-_ij_ involving
only Pj, led to accurate reproduced correlations, while the E_ii*
involving Eﬂ (and 22) did not. Predictions regarding correlations

containing 2, are disconfirmed because By is presumably not equal to 0.

Finally, suppose that all of the E_ij_* diverge from the observed

i 5_31*/ Iy, and 512_*;‘ I, imply that 227(0. However,
the Eﬁl:—f E_Ql-(-l =1,2,3) ma;-be a result of either (a) '23_2_)‘ 0

(which appears to be the case) or (b) P;gﬂﬂ_gf' 0. That is, we can
not infer whether By is equal or not equal to zero with this test. This
is hardly a trivial—concern if one wishes to ascertain sources of
disconfirmation. As a result, the reproduced correlation test applied to a
single model is of questionable use in actual practice with moderately to
highly overidentified manifest variable designs. Duncan (1975) and Bentler
(1980) review other problems of a statistical nature. A refinement of this

test has been suggested for latent variable analysis, and will be discussed

in that section.

The Omitted Parameter Test

The logic of the reproduced correlation test is that if the values of
E_':g'_ assumed equal to zero are in fact zero, then reproduced correlations
subject to overidentifying restrictions should be equal to their observed

counterparts. It would seem that one could save considerable fuss by

simply estimating, in a sample, the values of the Bii assumed equal to
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zero to see if, in fact, they do not differ significantly from zero. That ' i

is, if a path coefficient is hypothesized to equal zero, then one would
predict that its estimated value should not differ significantly from

zero. If the estimated path coefficient is not significantly different
from zero, then the prediction is confirmed. 1If it is significantly
different from zero, then the prediction is disconfirmed. This is the
omitted parameter test, and is logically equivalent to the reproduced
correlation test., More importantly, it provides a method to locate sources
of disconfimmation in recursive models.

To begin the illustration, let us return to Figure 2.17, where it was
shown that the (population) path model did not have a good fit with Matrix
B. This implied that the omitted parameter B4, was not equal to zero.

It is possible to solve for the value of B.‘l]_-b_y including ‘Eﬁ_l_ in

the path equation for 2, (Eg. 2.17c) and conducting a new OLS analysis

on the equation: Zy = Eﬂi}_ + _2252 + 2_4_3-2-3 +_q§. The

population value of_g41 given by an—OLS anaIysis using the correlations
in Matrix B is .20, w;x—i-ch differs considerably from zero. Thus, the
omitted parameter test and the reproduced correlation test result in the
same conclusion for this simple model. Note also that if (a) the terms
deleted fram the decamposition equations in Figure 2.17c are instead

retained, and if (b) the value of .20 is used for By then (c) the

observed and reproduced correlations for 541, 542, and 54_2 are

identical.
E- Things are often not this simple. Let us continue with a discussion
of the omitted parameter test, where sample data are now assumed because we

wish to address significance tests. Consider the path coefficients in the
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[P

original path equations for Figure 2.18 (Egqs. 2.38 through 2.40). We will

presuie that the values of these coefficients are estimated using OLS., The
goodness of fit test is then conducted by inserting the variables with path
coefficients predicted to equal zero into the appropriate equations and !
conducting new OLS analyses. In the present case, OLS would be conducted |

to estimate the path coefficients in the following equations (the 2, ?

equation does not have an omitted parameter):

2y = 231_2__1- + 22*5_2 + _gg (2.47)
(2.48)

24" Ry T Raly * ety v Yy
where asterisks indicate the path coefficients that should be equal to zero,

and circumflexes denote that we are dealing with sample estimates of path

coefficients (and disturbances).
If E}E* and Bil_* are not significantly different from zero,
then the predictions are confirmed. Confirmation implies that the
parameters or path coefficients P3, and p,, are zero and that this
1 part of the original path model is valid. That is, the omitted paths

should have been omitted. If §32* and/or é&l‘l* is significant, then

o

at least one prediction is disconfirmed. Disconfirmation implies that the
original path model is invalid, which is to say that at least one omitted

path should not have been omitted (i.e., and/or p,. is not

57
equal to zero). It is particularly important to note that this process
allows one to ascertain precisely the source of disconfirmation.

In samples, §32* and é41* are tested for significance using
standard tests for_r-egressi;; weights. There are, however, some problems

with the use of these significance tests. First, confirmmatory analysis is

usually conducted on large samples. Thus, the test of significance is
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rather powerful, and paths with rather trivial magnitudes (e.g., a Eii*
= ,05) may be statistically significant and lead to disconfirmation. There
are no clear rules of thumb here; one may wish to go beyond the data and
argue that a significant but very low path coefficient, less than 't.osl for
example, does not do serious damage to a model. This is a matter of
judgment, however, and the author must have a strong theoretical defense in
support of such a decision.

A second problem is multicollinearity, which occurs when two or more
variables in the same equation are correlated highly with one another (see
Johnston, 1972, and Gordon, 1968, for discussions of indicators of
multicollinearity) . A key product of multicollinearity is that "it becames
very difficult, if not impossible, to disenténgle the relative influences
of the various X [causal] variables" (Johnston, 1972, p. 160). 1In
effect, one can place little faith in sample estimates of structural
parameters and significance tests (cf. Gordon, 1968). The probability of
a multicollinearity condition is of serious concern in omitted parameter
tests (James & Jones, 1980). Consider, for example, Eq. 2.48, where

~

41* is to be tested for significance. Variable z; is included in

an equation with two variables for which it is a cause, namely 2, and

z If z, is a strong cause of z, and z,, then z; will be

3
c;rrelateg highly with 2, and _2_3.— It is possiblej therefore, that the
equation used for the om;tted p;raneter test (Eg. 2.48), which considers,
_z_l, 2, and 2y as causes, could be subject to a multicollinearity
c;ndit;on. Give; multicollinearity, one has several options, including (a)

hierarchical regression (cf. Cohen & Cohen, 1975) or (b) a disturbance term

regression test described in James and Jones (1980). Inasmuch as these tests
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concern primarily statistical issues, they are not discussed here.

A final issue is protection of the significance level when multiple,
nonindependent significance tests are conducted on the same sample. This
issue has not been a concern in manifest variable analyses, although it
should be in both Conditions 9 and 10. We will treat this issue briefly in

the section on latent variables.

A Combination of the First and Second Tests of Confirmation/Disconfirmation

In the preceding condition (Condition 9) we described how it is
possible to confirm/disconfirm predictions furnished by structural (path)
models and functional (path) equations. This first test of confirmation/
disconfirmation addresses predictions that estima{:ed values of structural
parameters (path coefficients) included in functional equations should be
significantly different from zero. The second test of confirmation/
disconfirmation described in the present section addresses predictions that
estimated values of structural parameters (path coefficients) not included
in functional equations (i.e., omitted parameters) should not be
significantly different than 2zero. The strongest case for
confirmation/disconfirmation is made if both tests are conducted, which

requires at least some overidentified equations to conduct the second test.

To review how the tests are cambined, consider the path equation for

z, in Figure 2.18, which may be viewed as:

4

34 = (Bﬂ-_* = 9_)_2_l +£4252 + 24353 + 3-4- (2.49)

= BgaZy * Bg3Z3 + U, (2.50)

it ok
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' The first test of confirmation / disconfirmation tests the predictions
that the sample OLS estimates of Eﬁ?_ and Bﬂ}' or éﬂ and §43,
are significant. If both estimates are significant, we ha\—;-; partial
confimation for this structural equation. The term "partial confirmation”
is used because the values of Bﬁ.z_ and p,, are estimated conditional
on the assumption that p, = 0. -‘_If 13_42 and/or §43 is
nonsignificant (the interpre:a—tion of signifi:;nce is le-f.g to the
investigator), then this functional equation, and therefore the structural
model, are disconfirmed, although we recammend that one still proceed to the
second test of confirmation/disconfirmation. The second test concerns the
prediction, based on the assumption that 241* = 0, that é‘u* is not
significant. The test requires another OLg_analysis to og;ain a value of
é;l' 1f §41* is not significant, then the prediction has been
c:);firmed Tar-)d the functional equation is said to be (logically) consistent
with, or to have a good fit with, the data, given that §42 and é“
are significant. 1If, however, (a) either _§42 or ﬁ43, or-;oth, i:
nonsignificant, and/or if (b) -§41* is sgnific;t, then (c) the
functional equation and the model ;e disconfirmed. Either source of
disconfimmation (i.e., the first or second test) implies that the eguation
and the model are logically inconsistent, or fail to have a good fit, with

the data.

To summarize, if all functional equations in a structural model pass the
first test of confirmation/disconfimmation, and if all overidentified

functional equations pass the second test of confirmation/disconfirmmation,
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then the structural model is said to have a good fit with the data, or to be
logically consistent with the data. We can say, therefore, that the
structural model is confirmed because it has passed both tests required for
confirmation. However we can not conclude that the structural model which
generated the predictions is a "true model". By true we mean that the model
and functional equations accurately represent causal processes. On the other
hand, if a structural model is disconfirmed by either test, we have a strong,
but not necessarily unequivocal, case for concluding that the model is false.
These points are discussed in the next section, where we address "causal

inference".

3. CAUSAL INFERENCE WITH MANIFEST VARIABLES

"The insidious thing about the causal point of view
is that it leads us to say: 'Of course, it had to
happen like that.' whereas we ought to think: It
may have happened like that—and also in many
other ways." |

~— Ludwig Wittgenstein (1980)

We begin this section by restating the third principle for the logical
foundation of confirmatory analysis (the principles were presented in

Condition 9, Section 2). The principle is:

3. Oonfirmation of predictions implies corroborative support
for the structural model represented by the functional relations
and equations. Disconfirmation of predictions implies that one

or more components of the structural model (functional relations
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and equations) is false, in which case it is concluded that the

structural model as proposed originally is invalid.

We focus first on confimmation. The corroborative support provided by
confirmation implies campletion of the following progression: (a) causal
hypotheses have been made and formally specified in a structural model and in
functional equations; (b) conditions pertaining to the appropriateness of
theoretical models (Conditions 1 through 7) and operationalization of
variables (Condition 8) have been reasonably satisfied; (c) a set of
predictions regarding significance of structural parameters and/or
reproduction of a correlatim(variance-covariance) matrice have been derived
from the structural model and functional equations; and (d) the predictions
have been confirmed by empirical tests. This progression suggests that one is

in the position to make the judgment, or causal inference, that the causal

hypotheses on which the structural model and functional equations are based

are useful for explaining how and why the endogenous variables in the

model occurred and are related to other endogenous as well as exogenous
variables. Explanation is possible because structural models and functional
equations provide explicit, quantitative statements of theory that,
presumably, specify the rules that govern the occurrences of natural events
and the structure of observed relationships among naturally occurring events
(Heise, 1969). Confirmation of a structural model suggests that these rules
are useful and may be used to infer the causal processes that are, and were,
operating.

One must be mindful that it is necessary to make a number of

untestable assumptions in the process of conducting a confirmatory
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analysis, By untestable assumptions we mean that reasonable satisfaction
of subsets of conditions from Conditions 1 through 8 is based on "faith"
and not empirical tests. For example, with cross-sectional data one cannot
test the stability condition (Condition 7), operationalize a cyclical
recursive model (Condition 4), or attempt to control bias resulting from an
unmeasured variables problem (Condition 5). Consequently, reasons must be
offered for assumptions that the model is stable and in an equilibrium-type
condition, that causal relations are noncyclical within a temporal bound,
and that the unavoidable unmeasured variables problem is not sufficiently
serious to preclude confirmatory analysis. Prior research may furnish a
basis for assumptions, but an investigator cannot avoid the fact that
he/she is relying on faith when he/she assumes that untested conditions are
reasonably satisfied.

The issue of reasonable satisfaction is also important in regard to
corditions that can be tested empirically. It is usually necessary to rely
on reasonable satisfaction, rather than perfect satisfaction, of conditions
or subsets of conditions that can be subjected to empirical tests. For
example, perfect reliability is seldom attained in manifest variable
studies. As discussed in Condition 8, high reliability is generally
considered sufficient for reasonable satisfaction of the reliability
assumption, although no unequivocal definition exists f~r "high", and the
effects of measurement error in elaborate models is often unpredictable.
Other assumptions that are potentially testable, but for which reasonable
satisfaction is considered sufficient, include the construct validity of

manifest variables, interval measurement scales, and linearity. Althowgh

.
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reasonable satisfaction of empirically testable assumptions is considered
sufficient for proceeding with confirmatory analysis, the cumulative
effects of various, presumably nonserious, violations are essentially
unknown.

Untested assumptions, in cambination with reasonable rather than
perfect satisfaction of tested assumptions, suggest that confimmation of a
structural model is not synonymous with proof that the model is true or
correct. Confirmation implies only that those assumptions that were tested
by empirical analysis provided corroborative support for the structural
model. This support may disappear, however, if an untested assumption is
shown later to be false, or if what appears to be reasonable satisfaction
of an empirically tested assumption is in fact unreasonable. These points

lead us to the crucial conclusion that it is possible to confirm a false

structural model. On the other hand, it is also possible to disconfirm a

true model. For example, a nonsignificant parameter estimate between

variables thought to be causally connected may be due to imprecision in the
measurement of the variables rather than lack of true causal connection
(cf. Cook & Campbell, 1979). Thus, disconfirmation is not necessarily
synonymous with disproof of a structural model, although, as discussed
shortly, disconfimation, in comparison to confimation, has stronger
implications for the usefulness of a structural model.

Before contrasting confimation and disconfimmation, allow us to
furnish a simple illustration of how it is possible to confirm a false
structural model. Consider Figure 3.1, which presents a false path model
and a true path model for a manifest variable design. The difference

between the models is that the true model includes an additional, exogenous
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cause of 24 that is correlated with 250 but not with z- This

suggests that z, is an ummeasured relevant cause of 23 in the false

model, which implies that Condition 5 (self-containment) is violated in the

24 equation. However, note the predictions for the two models. Both

t;e false and true models predict that Py, and po, will be

significant (first test of confimation/g;sconfi:m-ation discussed in
Section 2, Condition 9). The difference between the models is that p,,

in the false model will be biased in an upward direction due to lack ;; a
control for -Ea (assuming relations are linear and positive, and
disregarding ;uppressors) . Furthemmore, both models predict that 231*
will be nonsignificant (second test of confirmation/disconfimation—'—
discussed in Section 2, Condition 10). The consequence of this situation
is that the true model furnishes no clear case for disconfirming the false
model if one were to employ the false model in a confirmatory analysis. In

other words, given that the true model is in fact true, the false model

would be confirmed.

Insert Figure 3.1 about here

Numerous other illustrations could be used to demonstrate how it is
possible to confirm false models (cf. Duncan, 1975). The simple example
in Figure 3.1 makes the point that confirmation does not imply truth in a
structural model. We should also mention that this point is often
characterized in a different manner in the confirmatory literature. The
characterization is as follows: (a) a structural model will generate one

and only one set of correlations (variances-covariances) among manifest
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variables, although (b) a particular correlation matrix may be generated by
more than one structural model. Thus, two or more structural models may
generate the same correlation matrix, and demonstration that a model
reproduces a correlation matrix does not imply that it is a true, or a
unique, structural model. This characterization may be tied to our example
in Figure 3.1 by noting that 322_* = 0 implies that I3 = 2_2-1_232
and—— -

in both the true and false models (given that 2 are

2,
unrelated in the true model). -

This problem has been a subject of concern in the philosophical
literature, as well as to us in advocating confirmatory analysis. We will
now draw from the philosophical and other literatures to explore this issue
further, our objectives being to point out a logical asymmetry between
confimation and disconfirmation, to discuss the role of causal inference
in science, and to suggest approaches to confirmatory analysis that furnish
a camparatively stronger base for causal inference.

Returning to the question of confirmation, we have endeavored to point
out that confirmation of predictions regarding the signficance (first test)
and nonsignificance (second test) of estimated structural parameters, where
predictions were deduced for causal hypotheses, can not be used to
establish the truth of the causal hypotheses. To maintain fidelity with
the philosophical literature, we shall refer to predictions pertaining to
the significance/nonsignificance of estimated structural parameters as
"correlational hypotheses". Thus, given confirmation of a correlational
hypothesis, to conclude that the causal hypothesis (P) is true because the

correlational hypothesis (Q) deduced from it is true (confirmed) would

involve committing the fallacy of affirming the consequent. This fallacy
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occurs in arguments of the form, "P implies Q: Q is true; therefore, P is
true”. The fallacy lies in the possibility that P logically may be false
even though Q is true. The only case in which the truth of P could be
inferred from the truth of Q would be if the truth of P were both

necessary and sufficient for the truth of Q. With empirical phenomena

this is not feasible because one can never rule out the logical possibility
that other reasons exist for Q to be true than those considered when
deducing that Q is implied by P. Try as we do to establish closed systems,

we never can be certain that we have done so. On the other hand, it is not

a fallacy to conclude that a causal hypothesis (P) is false if the
correlational hypothesis (Q) deduced from it is false (i.e., disconfimmed).

This is the formm of the argument known by logicians as modus tollens,

which has the form: "P implies Q: Q is false; therefore, P is false.”
Note, however, that this logic does not consider the possibility that a

1 ‘ correlational hypothesis may be falsified because of specification errors,
especially imprecision in the measurement of variables. Thus, even
falsification of correla?ional hypotheses is not unequivocal, which
suwggests that one should be circumspect about using a single
disconfirmation to falsify a causal hypothesis (cf. Cook & Campbell, 1979;
Popper, 1959)

For reasons such as those discussed above, the philosopher Popper
(1959) has argued that scientists can never deduce the validity of a
general proposition about the world from the truth of a proposition
concerning a particular event deduced from the general proposition. On the
other hand, Popper argued that one can correctly infer the falsity of a

general proposition from the falsity of a proposition concerning a specific

a
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event deduced from the general proposition. Thus, as far as deductive logic

is concerned, Popper argues that science can only infer the falsity of

general theoretical propositions fram particular events, never their
validity. Nevertheless, Popper recognizes the inclination of scientists to
act as if their general theories are true when empirical consequences
deduced from them are confirmed in experience. He euphemistically refers
to these situations as those in which theories are "corroborated" by the
confimation of their particular consequences.

We have already discussed the point that the inference that a causal
hypothesis is true when a consequence (prediction) deduced from that
hypothesis is confirmed in experience would involve the commission of a
logical fallacy. The logical possibility always exists that the prediction
deduced from the causal hypothesis is confirmed for reasons other than
those we considered when formmulating the causal hypothesis. This
limitation on the possibility for logical inference from empirically
confirmed consequences is, as discussed at the early part of this section,
a function of the fact that it is not possible to test empirically all
conditions required for confirmatory analysis, or to be assured that
empirically tested assumptions have been fully satisfied. It follows
directly that causal inference based on confirmatory analysis must be
tenwus, which is to say subject to alternative explanations. In other
words, the limitation comes down to a limitation associated with all
attempts to establish inductive forms of reasoning where one seeks to
generalize from particulars in experience. On the other hand, the

inference that a causal hypothesis is false when a prediction deduced from
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that hypothesis is disconfirmmed in experience is not an invalid inference

as long as one is committed to act as if the deduced consequence is false.
It is a question of the correct use of deductive logic, not whether
deductive logic leads to necessary truths about the world. Thus, one
appears to be in a better position to infer the falsity of causal
hypotheses rather than to infer their validity on the basis of experience,
This is essentially the position advocated by Popper (1959) and echoed by
others (cf. Cook & Campbell, 1979; Duncan, 1975; Heise, 1975; Namboodiri

et al., 1975).

There is something disturbing, however, about a position that suggests
that all we can do in science is negate something, never affimm it. This
position seems to run counter to our experiences in which scientific
theories are offered as explanations of phenomena. It runs counter to the
passion with which we and others affirm the truth of a scientific idea or
the confidence we have when we use laws of physics.to build bridges and to
operate space shuttles. To be a scientist involves cammitting oneself to
the affirmation of corroborated theories while at the same time submitting
them continuwously to empirical tests.

In our view, one must understand Popper's (1959) emphasis on the
falsification of theory as the outcame of an analysis of what could
rationally be concluded in attempts to validate scientific theories.
Popper explicitly ruled out as irrelevant for his analysis psychological
(extralogical) concerns such as how theories might be formulated or

developed from experience. Presumably, he would also rule out as
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irrelevant psychological concerns about what people would do once they have
subjected a theory to the test. Thus, if people act as if a theory is
true when it is merely corroborated, this must be for Popper merely a quirk
of human behavior having no rational justification on the basis of the
evidence used to validate the theory. But being a matter of extralogical
behavior, it is beyond the confines of his analysis. There can be no
question that acting as if a theory is true when it has been merely
corroborated—which we may regard as a form of inductive behavior—is an
important aspect of the scientific enterprise. Thus, if Popper's account
of the scientific enterprise seems distorted to us, it is because it is
actually limited to only the logical aspect of the enterprise.

It may be disheartening to find that corroboration of a structural
model gquarantees neither that the model is unassailably correct nor yields
a umnique explanation of relations among variables in the model. But, as we
have endeavored to explain, this is the limitation of inductive
"inference". What one must keep in mind is that the goal of confirmatory
analysis in science is to attempt to explain how and why variables occur
and are related. An intuitive approach to causality and causal explanation
in psychological research involves proposing functional relations among
variables in the form of structural models (theories), If the causal
explanations represeted by functional relations (equations) are empirically
corroborated by data, this does not mean that we will enter into a state of
suspended animation. Rather we will seek to disseminate our inferences
regarding causal explanations so that others may test them. We also seek
to apply the explanations to solve problems, a process which furnishes

additional sources of confimation / disconfirmation. We continue in these
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and other endeavors until some other explanation cames along to replace the
present one, or until we encounter one, and preferably more than one,
instance in which it is clearly disconfirmed. One must strive to obtain
explanations for events, even if to do so involves ambiguities and
pitfalls.

But what happens if a particular set of observations leads to the
corroboration of not just one but of two or more distinct causal theories?
Popper (1959) considered this problem, and suggested that theories that are
more easily falsifiable are to be preferred to those that are less easily
falsifiable. To illustrate this rationale, consider that an easily
falsifiable manifest variable model is one in which a reasonably
parsimonious structure is used to explain a large number of observed
correlations among manifest variables. In other words, the number of
parameters that are predicted to equal zero is large in comparison to the
number of parameters that are free to vary and to be estimated, which is to
say that the model is highly overidentified. Thus, we have a comparatively
large number of overidentifying restrictions, any one of which could
disconfirm the model. In contrast, if only a few parameters are predicted
to equal zero and the rest are left to be estimated, then only a few
overidentifying restrictions remain with which to test goodness of fit.
Using Popper's suggestion, the former model should be preferred over the
latter model because it is more easily falsified (and parsimonious). The
larger the nunber of overidentifying restrictions (i.e., the higher the
degree of overidentification), the more likely the model is to be
falsified. (Note that we are dealing here only with the second test of

confimmation/disconfirmation. This test is considered by many to be the
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more crucial test of goodness of fit because nonsignificant, estimated
structural parameters of minor theoretical relevance can be theory trimmed
without major theoretical damage to a model. Nevertheless, a
nonsignificant estimate of a parameter of major theoretical significance is
seriously damaging to a theoretical model and results in disconfirmation
based on the first test of confirmation/disconfirmation.)

A second procedure that builds faith in a corroborated structural model

is to subject multiple, highly overidentified structural models to

confirmatory analysis. In general, psychology has no dearth of theories

regarding the causes of human events. In fact, the problem is often too many
campeting theories rather than too few theories. Each theory represents an
alternative explanation of events, and the recammended procedure is (a) to
develop a highly overiden:ified structural model for each theory, where each
model includes causal hypotheses that conflict with those of the other models;
(b) to subject each structural model to a confirmatory analysis; and (c) to
contrast the results of the confimmatory analyses and ascertain which one of
the structural models has the best fit with the data (i.e., provides the most
plausible explanation). It is possible, of course, that two or more models
will still have essentially equivalent fits with the data. This is a
worthwhile finding, however, because the investigator will not now accept
blindly one model as corroborated. Furthermore, assuming that some models
were disconfirmed, the investigator has a basis for identifying a reduced set
of plausible models. The next step is to articulate further each plausible
model in the interest of deriving conflicting hypotheses that can be tested in

future confirmatory analyses.

In conclusion, no claim can be made that causal inferences lead to unique
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or wmassailably correct causal explanations. It must be recognized that

accunulation of scientific knowledge may provide a basis for refuting an

inference at some future date. The process of causal inference rests on the
premise that we will use the knowledge that is presently available to attempt
to explain why psychological phenomena occur. This is the historical premise

of science; it is what one does when he/she behaves as a scientist.

4. AN OVERVIEW OF LATENT-VARIABLE STRUCTURAL MODELS.

Introduction

Up to this point we have discussed linear causal modeling with
observed or manifest variables. We will now consider the more general
case in which some of the variables of a linear causal model are latent
or unobserved variables. As defined earlier, a latent variable is a
hypothetical or theoretical construct, which is to say, an unobserved
variable presumed to exist within a structural model but for which direct
measurements are not available.

Linear models with latent and manifest variables are not new in
psychology. Psychologists have worked with such models for over 60 years
in connection with common factor analysis and the classical theory of
reliability with its "true" and "error" scores. However, structural

equation modeling with latent variables became practical only after

statisticians working in the area of factor analysis (J8reskog, 1970)
saw ways to generalize these efforts to encampass linear structural

equation modeling (Wiley & Wiley, 1970; Keesling, 1972; wiley, 1973;

J8reskog, 1973, 1977, 1979; J8reskog & Goldberger, 1975). These
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developments in statistical theory provided the basis for the development
and distribution of general purpose camputer programs for structural
equation modeling with latent variables such as J8reskog and S8rbom's
(1978) LISREL 1V program and McDonald's (1978, 1980) COSAN program. As a
result, increasing numbers of psychologists are today discovering the
usefulness of structural equation models in their research, while
increasing numbers of sociologists, econometricians and geneticists are
using structural equation models with latent variables.

Reasons for latent variable models. There are a number of reasons

for considering the use of latent variables in modeling causal
relationships.

First, since most of our theoretical constructs are abstractions, it
is convenient to distinguish between a hypothetical construct as a latent
variable and a concrete realization of it in a particular manifest
variable.

Second, the concrete realization of a construct is nonunique; the
same theoretical construct may be operationalized in any number of ways.
Thus, we can think of a danain of manifest observed variables, all of
which have in caommon the same underlying construct. For example, general
intelligence may be measured by various tests—for example, the
Stanford-Binet, the Wechsler Adult Intelligence Scale (WAIS), Raven's
Progressive Matrices, and the Lorge-Thorndike Test. In principle, the
nunber of ways in which a construct may be implemented operationally
through manifest variables is unlimited.

Third, our observed variables may involve fallible measurements,

which means that in addition to the effects of the hypothesized
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constructs, the values of our variables may also reflect errors of
measurement of an unsystematic nature. Attempts to estimate structural
parameters with manifest-variable approaches when the variables contain
nonnegligible errors of measurement may lead to serious bias in the
estimates.

Fourth, measurement of manifest variables may include systematic or
nonrandoam sources of error, such as variation due to method, context, or
person variables. These too, if overlooked or ignored, will lead to
serious bias in estimates of structural parameters. Latent variable
approaches provide means to deal with both random and nonrandom
measurement errors,

Finally, we may not be able to devise direct, univocal measures of
the theoretical construct in question because the effects of the
theoretical construct may never occur in isolation apart from the effects
of other causal variables. For example, we may never be able to devise a
measure of general intelligence (conceived of as the capacity to perceive
relationships) without its effects being confounded with other variables,
such as the various capacities involved in coding the content of the
stimulus materials (e.g., verbal, figural, numerical). In general, it is
situations such as the above that may be treated with models involving
both manifest and latent variables.

Developing latent variable models. Consider the latent structural

model shown in Figure 4.la. This model is essentially the model of the
causes and effects of perceived role overload presented earlier in connection
with Figure 2.1. However, in this case the variables in the model are

represented by perfectly reliable latent variables. They are perfectly
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reliable latent variables because they correspond to hypothetical construct
variables that have not yet been operationalized by linking them to specific
manifest measures. The four hypothetical constructs or latent variables are
(1) management's expectations regarding quality of employees' role
perfomance (expected quality), (2) management's expectations regarding
quantity of employees' role performance (expected gquantity), (3) employees'
perceptions of role overload (role overload), and (4) employees' state
anxiety. The model states that among employees in an organization, the more
their supervisors expect high quality of performance, and the more their
supervisors expect high quantity of performance, the more the employees will
perceive role overload, which in turn will increase the employees' levels of
state anxiety. The unlabelled disturbance terms assigned to perceptions of
role overload and to state anxiety, however, indicate that there may be other

causes of these variables.

Insert Figure 4.1 about here

For the sake of illustration, let us assume that the conditions for
the appropriateness of a theoretical model (Conditions 1 through 7) are
satisfied and that this model is an accurate representation of causal
relationships. Also let us assume, again for the sake of illustration,
that the correlation between the two latent exogenous variables, expected
quality of role performance and expected quantity in role performance,
is zero.

So far, we have stated our model only in terms of latent variables.

It is not possible to estimate the stremgths of causal relationships in
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the latent structural model because the latent variables are unmeasured.
To estimate the strengths of these causal relations, it is necessary to
operationalize each of the latent variables in terms of manifest variables
that are believed to be caused by a latent variable. In this sense, each
latent variable has the role of a canmon factor, and the manifest

variables serve as manifest indicators of the common factor.

Figure 4.1b presents possible manifest indicator variables for each

of the latent variables. This is referred to as the measurement model

because it specifies presumed causal relations between latent variables
(causes) and the manifest or measured variables (effects) that serve as
indicators of the latent variables. For example, four indicators of
expected quality of work performance might be role demands regarding
(a) reduction in waste (reduction-waste), (b) reduction in number of
faulty units produced (reductiom-faulty units), (c¢) increased number of
inspections (increased inspections), and (d) increased dependability of
product in tests of randamly selected units (increased dependability).
The small ¢ (epsilon) associated with each manifest indicator of
expected quality is a disturbance term that includes all causes of the
manifest variable other than the latent variable, such as measurement
error and nonrandam measurement errors.

Multiple indicators are considered necessary for expected quality
of work because either (a) expected quality can be manifested in a
number of ways, or (b) individual indicators may be measured with error,
or both (a) and (b). In contrast, only one manifest indicator variable
is associated with the quantity of work latent variable, namely, the

degree to which production quotas are satisfied (production guotas).




Furthermmore, the production quotas variable has no disturbance term.
The use of one manifest indicator variable denotes that the manifest

variable is regarded as a perfect indicator of the latent variable.

This means that the indicator is the primary way that the latent variable
is manifested and that the indicator contains neither random nor nonrandom
measurement errors. This appeared reasonable inasmuch as production
quotas are the key measures of quantity or work, are publicly stated,

and the degree to which they are satisfied is measured objectively.

Such is not the case for the role overload and state anxiety latent
variables, for which multiple manifest measurements are often available, each
of which contains error. Thus, multiple indicators are needed, which for
role overload might be the extent to which employees perceive (a) the need to
work extended hours (extended hours), (b} an insufficient number of employees
to accamplish role demands (insufficient personnel), (c) insufficient time to
camplete tasks (insufficient time), and (d) managerial pressure for
productivity (managérial pressure). The four manifst indicators of state
anxiety might include two self-report questionnaires for state anxiety, such
as (a) the Behavioral Reactions Questionnaire (BRQ; Endler & Magnusson,
1977), and (b) the State-Trait Anxiety Inventory (S-T Inventory; Spielberger,
1977), and two physiological indicators, such as (c) gastrointestinal
distress, and (d) headaches. Each of the manifest indicators for role
overload and state anxiety are also believed to be caused by a disturbance.

when manifest variables are regarded as nonperfect indicators of latent
variables, the goodness of fit of the measurement model must be tested. In
the present example, this suggests that the goodness of fit of the indicators

for quality of work, role overload, and state anxiety must be tested. The
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test takes the form of a confirmatory factor analysis, and is designed to

ascertain if manifest indicator variables are related to latent variables in

the manner predicted by the measurement model. The test is discussed later
in this section; this discussion includes a rationale for why at least four
manifest indicators are required for each latent variable in order to conduct

a goodness of fit test.

Given reasonable satisfaction of the goodness of fit of the measurement
model, it is possible to proceed to estimate the strengths of the causal
connections among the latent variables and to test the goodness of fit of the
latent structural model. Statistical procedures for accomplishing these

tasks are also explained later. At this time we note only that the

estimation and testing processes involve combining the measurement model with
the latent structural model. The combined models for this illustration are
shown in Figure 4.2. A model taking the form of Figure 4.2 is often referred
to as a "latent variable model™ or a "latent variable structural equation

model”.

Insert Figure 4.2 about here

Latent variable models versus manifest variable models: The question

of reliability. A major drawback of manifest variable models is that
they will yield biased estimates of structural parameters and path
coefficients linking latent, hypothetical construct variables when these
variables are represented by fallible (not perfectly reliable) manifest

indicator variables in a manifest variable path analysis. For example,

consider first the path model shown in Figure 4.3a. This is the latent
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structural model presented in Figure 4.la. The variables in the model are
represented by perfectly reliable standardized latent variables. They are
considered standardized because units of measurement are arbitrary, and zero

means and unit variances are convenient.

Insert Figure 4.3 about here

Mgain, for the sake of illustration, let us assume that this model is
an accurate representation of causal relationships. Furthermore, let us
assume that in the population of employees to be considered, the
{population) path coefficients associated with the latent variables are as
they are given in Figure 4.3a. (Primes denote ‘path coefficients linking
latent variables) . Note that the magnitudes of these path coefficients
suggest that perceptions of role overload are influenced more by role
expectations regarding quality of performance (2'31 = ,60) than by role
expectations regarding quantity of performance (2'32 = .50). Again,
let us assume that the correlation between the two latent exogenous
variables is zero. Finally, we assume that the two exogenous variables

do not relate directly to the latent state anxiety variable.

Suppose that for each latent variable of the model we now choose
one manifest variable to serve as an indicator of the latent variable.
But suppose, as often happens, that many of the manifest indicators

are not perfectly reliable. Then consider Figure 4.3b, which is a latent

variable model that includes both the structural and measurement models.

That is, we have added four standardized manifest variables to the model,

which, with the exception of production quotas, are fallible indicators
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of the respective latent variables. The three fallible indicators are
easily identified because they are viewed as effects of a disturbance
designated by €. Disturbance terms are regarded as latent variables and
are considered here to be in standardized form., Moreover, these latent
disturbances are regarded as consisting exclusively of errors of measurement

in this illustration. This means then that the measurements (scores) on

each falliable manifest variable are presumed to be a function of both a
latent variable and random measurement error.

Given standardized variables, the causal effects of the latent
variables on the manifest variables may be represented as path
coefficients. In fact, because we assume that the € consist only of
random measurement error, the path coefficients associated with the arrows
going from the latent variables to their manifest indicators represent
the square roots of the reliabilities of the manifest variables. For
example, the path coefficient linking the expected quality latent variable
to its manifest indicator, increased dependability, is .81; the
corresponding reliability, shown in parentheses, is .65. Note that only
production quotas, the manifest indicator for the latent variable of
expected quantity of role performance, has a reliability of 1.00. As
before, this means that the manifest variable is a perfect indicator of the
latent variable. The reliabilities of the remaining three manifest variables
are less than 1.00, indicating randam error in measurement and the lack of

perfect correspondence between latent and manifest variables.

By processes to be explained later in this section, it is possible to

solve for the correlations among the four manifest variables using the path
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coefficients shown in Figure 4.3b. These correlations can then be used to

solve for the path coefficients linking the manifest variables bv the OLS

procedures discussed in Section 2. The results of the path analygzis on the
manifest variables are reported in Figure 4.3c.

It is now interesting to campare the path coefficients in the manifest
variable model (which do not have primes) in Figure 4.3cwith the "correct”
path coefficients of the latent variable model in Figure 4.3a. The
corresponding values for these path coefficients are not the same. This
means that if we use a manifest variable approach with fallible indicators
of latent variables to estimate the path coefficients among the presumed
perfectly reliable latent variables, then the estimates will be biased. 1In
this illustration the estimates are all attenuated. Moreover, the bias is
sufficient to lead one to reverse the relative importance of causes on a
dependent variable. For example, in Figure 4. 3c the path coefficient
relating the indicator for expected quality of role performance (i.e.,
increased dependability) to the indicator for role overload (i.e.,
insufficient time) has a value of .42 (231 = ,42). This value is less
than the path coefficient relating the indicator for expected quantity of
role performance (production quotas) to the role overload indicator (332
= .44). This is just the reverse of the "correct" situation in Figure
4.3a, where the path coefficients are _931' = ,60 and 232' = .50,
respectively.

In sun, measurament error in manifest variables may have serious
consequences for confirmatory analysis. If the measurement error is
regarded as nontrivial, then corrective procedures are required.

Corrective options include the latent variable form of analysis to be
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described here, as well as other procedures described elsewhere, such
as correction for attenuation in path analysis (cf. Kenny, 1979), and
instrumental variables and two-stage least squares (cf. Goldberger,
1973; James & Singh, 1978).

Summary. Random measurement error is not the only reason for
considering latent variable models. In fact, good reasons exist for using
a latent variable approach even if manifest variables can be measured with
a high degree of reliability., Consider the points made earlier—that many
latent variables (hypothetical constructs) are abstractions and can be
operationalized by any number of manifest indicator variables. An
important aspect of confirmatory analysis with latent variables is a test
of the goodness of fit of an a priori measurement model, which is to say,
a test of whether multiple manifest indicators are related to latent
variables by a structure hypothesized by the investigator. In effect, this
is a test of the construct validity of the manifest indicators and, by
implication, of the adequacy of the proposed latent variables. Thus, a
latent variable analysis makes possible a test of construct validity,
another key measurement concern. Of at least equal importance is the fact
that (a) given a good fit between a proposed measurement model and the
observed data on manifest indicators, then (b) it is possible to estimate
the strengths of causal relations among the latent variables. As in
manifest variable models, the causal relations among latent varibles are
estimated within the context of a structural model relating the latent
variables. Goodness of fit tests based on the logic of Condition 10 are
performed if the latent structural model is overidentified.

In summary, latent variable analysis provides the opportunities
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{a) to work with perfectly reliable causes and effects, (b) to test the
goodness of fit of a presumed measurement model, and (c) to test the
goodness of fit of a structural model relating latent variables both in
terms of estimating causal parameters and in terms of testing
overidentifying restrictions.

One does not partake of the benefits of a latent variable approach
without paying a heavy price. The lesser part of the price is that one
must conquer a camplex and often cumbersome terminology. More demanding
is a requirement that one have a methodological sophistication that
exceeds even that required in the most complex multivariate course
generally offered in psychology. However, we believe the price is
worthwhile for those desiring the benefits. In the discussion to follow,
we have tried to ease the pain by focusing on the logic of the approach
and merely overviewing many of the statistical equations. However, we
believe that it is important to maintain fidelity with what truthfully is
a very camplex procedure. It is also noteworthy that the pitfalls of the |
latent variable procedures are not as well—-known as those associated with
the manifest variable procedures, which is due to the fact that the latent
variable approaches were developed much later than the manifest variable
approaches. Finally, our attention in this section is focused on the
operational aspects of latent variable analysis., However, as reviewed at
the end of this section, the seven conditions pertaining to the
appropriateness of theoretical models for confirmatory analysis are every
bit as important for latent variable models as they are for manifest

variable models. f
|
|
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Representation of Structural Models with Latent Variables.

Notation. With the need now to distinguish between manifest and
latent variables in our discussion, we need a new notation. The notation
we will use, with minor modifications on our part, was suggested by Bentler
and Weeks (1980). In Figure 4.4 we show the hypothetical structural model
of Figure 4.3a in the new notation. In this notation latent exogenous and
latent endogenous variables are represented in structural diagrams by
letters enclosed in circles or ellipses. Latent exogenous variables are
designated by the Greek letter £ (xi) with subscripts, while latent
endogenous variables are designated by the Greek letter n (eta) with
subscripts., Disturbance terms or variables are always treated as latent
variables and are identified by the Greek letter g (_epsilon) with

subscripts but without enclosing circles or ellipses.

Insert Figure 4.5 about here

As in structural diagrams with manifest variables, causal connections
between variables are indicated by arrows, with each arrow pointing from a
causal variable to an effect variable. The lack of an arrow between two
] variables indicates the lack of a direct causal connection between these
variables. Associated with each arrow is a structural parameter that
1 indicates the number of units of change in the effect variable resulting
from a unit change in the causal variable, holding all other causes of the
effect constant. A structural parameter correspording to a missing arrow
is regarded as fixed and equal to zero. The structural parameter

associated with an arrow from an exogenous variable to an endogenous
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variable is designated by the Greek letter Y (gamma) with subscripts, the
left-most subscript indicating the number of the endogenous variable and
the right-most subscript indicating the number of the exogenous variable,
The structural parameter associated with an arrow from one endogenous
variable to another endogenous variable is indicated by the Greek letter a
{alpha) with subscripts, with the left-most subscript the number of the
endogenous variable that is the effect variable and the right-most
subscript the number of the endogenous variable that is the causal
variable., The structural parameter associated with an arrow from a

disturbance variable to an endogenous variable is designated by the Greek

letter § (delta) with subscripts. Two—~headed arrows connecting pairs of
exogenous variables or disturbance variables indicate nonzero covariance
relations between these variables.

In Fiqure 4.4 _6_1 and 5_2 are latent exogenous variables. Both are
causes of latent endogenous variable p_l but not of latent endogenous
variable 22. The two—~headed arrow between latent exogenous variables
51 and §, indicates a presumed nonzero covariance between them. Latent
endogenous variable L is in turn a cause of latent endogenous variable
are disturbance variables, each associated with

_7)2. variables € and €

1 2
its respective endogenous variable., The disturbance variables are presumed
to be uncorrelated.

A model with all latent variables in it, like the model in Figure
4.4. cannot be tested empirically until it is operationalized by linking
the latent variables to manifest variables in an appropriate way. The

L 4
linkage of a latent variable to manifest variables in a model is usually

accompl ished by including at least four manifest indicator variables that
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are presumed to be effects of (i.e., caused by) the latent variable., The

reason four manifest indicator variables are required is so that the latent

variable and the structural parameters indicating the degree of its effect
; on the indicator variables will be overidentified. This allows one not
only to estimate uniquely the structural parameters but also to test the
presumption that the manifest indicator variables have a latent variable as
1 a common causal variable. Such a situation is illustrated in Figure 4.5,

1 which shows four indicator variables YyreeerYyr each an effect of

latent exogenous variable 51 and one of the mutually uncorrel ated
disturbance variables €1recer e Figure 4.5 also serves to introduce
notation for manifest variables in structural models with both manifest and

latent variables. Notice that variables Yyre--r¥y are enclosed in

boxes. This means they are manifest variables. They are furthermore
designated by the letter y, which indicates that they are manifest
endogenous variables. The Greek letter Y (gamma) is again used to

indicate a structural coefficient of a causal relation between an exogenous
variable and an endogenous variable. Moreover, the Greek lettert_g (delta)
is again used to indicate the structural coefficient of the effect of a

disturbance variable on an endogenous variable.

Insert Figure 4.5 about Here

| Our notation also permits us to have manifest exogenous variables. As
E shown later, these will be designated by the letter x enclosed in a box.
However, manifest variables selected as indicators of a latent exogenous

i variable are ordinarily endogenous and not exogenous variables., The reason
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this is so is because the manifest variables chosen as indicators of a
latent exogenous variable are usually effects of not only the latent
exogenous variable in question but of extraneous variables as well, which
are subsumed under the respective disturbance variables attached to the
manifest indicator variables. Not the least important of these extraneous
variables will be errors of measurement. Furthermore, the effects of a
latent variable on its manifest indicator variables may be measured in
different units of measurement, which would be reflected in different
values for the structural parameters relating the latent variable to its
respective manifest indicator variables.

However, before we proceed, we must consider how we would treat an ideal
situation in which we had more than one presumably "pure", disturbance-free
manifest indicator variable of a latent variable. Figure 4.6 illustrates
just such a model. Variables Xl"”'xtl are disturbance—-free manifest
indicators of latent exogenous variable 51. By "disturbance-free" in this
case we mean that each indicator variable has only the latent variable .51
as a cause. There are no extraneous causes in addition to the latent
variable 51 In this example the indicator variables are perfectly
correlated with the latent exogenous variable (and with one another). They
differ among themselves in having different values for the structural
parameters relating them to the latent exogenous variable because, say, they

are measured with different units of measurement.

Insert Figure 4.6 about Here

when we have more than one disturbance-free indicator of a latent

4
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variable, then we should discard all but one of these for use in a model.
This will avoid the problem of singularity for the variance-covariance
matrix of the manifest variables that arises from having several variables
that are simple linear combinations of other variables in the analysis. (A
singular or noninvertable sample variance-covariance matrix for the
manifest variables would preclude obtaining estimates of the structural
parameters of the model) . The indicator variable retained and the latent
variable it "indicates" can then be treated as simply identical. That is,
we can replace the latent variable by the manifest variable in the model.
If the latent variable replaced by a "disturbance-free" manifest indicator
has a disturbance term, because the latent variable is an endogenous
variable as well, then the manifest indicator acquires the disturbance term
of the original latent variable. This disturbance is not the disturbance
of which the manifest indicator is "disturbance-free". Saying that the
manifest indicator is a disturbance-free indicator simply means that
relative to the latent variable as a cause of the indicator, there are no
other extraneous causes. This says nothing about the extraneous causes of

the latent variable that the indicator may replace.

Thus, given these notational considerations, we might have a model
like that in Figure 4.7. In this model we have one latent exogenous
variable, 51, linked to four manifest variables, Yoreeer¥er each
of which is also linked to one of four disturbance variables E,...,
gs. We also have a single manifest exogenous variable Xoe Variables

51 and :_(2 are also causes of a manifest endogenous variable, Yy to

which is also drawn a disturbance variable _91 representing a camponent of

Y; not caused by the exogenous variables. Note that with this example




we have introduced a manifest exogenous variable and denoted it by the

subscripted letter x contained within a box. Also we have used the
Greek letter Y (gamma) to denote structural parameters relating exogenous
variables to endogenous variables, while § (delta) denotes the structural

parameter relating a disturbance variable to an endogenous variable.

Insert Figure 4.7 about Here

A situation in which one has four exogenous manifest variables regarded
as causes of a single latent variable, which we illustrate by a model in
Figure 4.8, should not be confused with a situation in which one has four
manifest indicator variables, each an effect of a common latent variable,
such as illustrated in Figure 4.7. 1In Figure 4.8 we presume that the
manifest wvariables XjreeerX, are perfectly reliable but not strongly
correlated, exogenous variables. Each of these manifest exogenous
variables is a distinct cause of latent variable 1_11, which also is an
effect of a latent disturbance variable _e_l. Latent variable 111 is in
turn a canmon cause of manifest indicator variables YoreeerYos each
with its respective disturbance variable _62,...,§5. Again Y refers to
structural parameters relating exogenous to endogenous variables,

to structural parameters relating endogenous to endogenous variables, and

_8_ to structural parameters relating disturbance temms to endogenous variables.

Insert Figure 4.8 about Here

Note also that in these models we have numbered variables in the
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following way: Exogenous variables are grouped together and latent
exogenous variables are numbered first, before manifest exogenous
variables are numbered. Similarly, endogenous variables are grouped
together and latent endogenous variables are numbered before manifest
endogenous variables, Disturbance variables receive the number of the
corresponding endogenous variable.

Structural equations. Consider the structural model in Figure 4.9.

This model represents an operationalization of the latent construct
variables of the model in Figures 4.3a and 4.4. Note that the model

contains both latent and manifest exogenous variables as well as latent and

manifest endogenous variables, -E-l is a latent exogenous variable
operationalized by four manifest endogenous indicator variables
Yyyreeer¥jse X, 1is a manifest exogenous variable. E, and

X, are both causes of a latent endogenous variable Ny, as indicated

by the arrows fram 51 and %, to 1]1. Four manifest endogenous

variables Y3reeer¥gr SCELVE as indicators of _7_11 as indicated by

the arrows from nl to these variables. 31 is also a cause of latent
endogenous variable 32, which in turn serves as a common cause of
manifest endogenous indicator variables y.,...,y;,. Further note
that each endogenous variable in this model has one of the latent
disturbance variables 51""’§14 associated with it. Also observe that
there are no double-headed arrows between -E-l and x,, indicating that
these exogenous variables are uncorrelated, while there are also no
double-headed arrows among any of the disturbance variables, indicating

that they too are mutually uncorrelated.

As in the case with models with manifest variables, we may express the
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model in Figure 4.9 by a system of simul taneous equations. One equation is
developed for each latent or manifest endogenous variable, which means we
shall have 14 equations., Each equation includes the latent and/or manifest
variables that have a direct effect on the endogenous variable, including

disturbance variables. This system of equations follows:

o= & ik vk

np = &t 8228,

y3 = S+ 6338,

vg = S0

Yo = M+ Ss5s8s

Yo = Sl * 86

Y7 = %0, * 8178 (4.1)
Yg = Lgoll, * Sge8s

Y9 = %0, * S908y
Y10 © %0,2% * 810,1010
Y = Yuaht $11, 1180
Y12 = V12,15 * 812,182
Y13 = N3,18 * 83,1353
Y14 = N4, 814,14514

Matrix Bquations. The model in Figure 4.9 is a relatively simple

linear structural model with latent variables. But latent variable models
can became much more camplex. For instance, a model may involve many
latent causal and effect variables, each of which is represented by a
number of manifest indicator variables. In other latent variable models,

the exogenous variables may be intercorrelated. Disturbance variables may




also be mutually intercorrelated. (Disturbance variables must not be
correlated with excgenous variables). Ordinary algebraic notaticn thus
becanes extremely cumbersome to deal with in structural models with latent
variables. And so, latent variable models are usually described with
matrix algebraic eguations.

There have been a number of notational systems proposed for
representing structural equation models by equations in matrix algebra. A
very popular system of matrix notation is used in connection with the
LISREL camputer program of J8reskog and S8rbam (1978). This notation
distinguishes between a structural equation model and a measurement model.
Distinguishing between these two models is based on the assumption that all
structural equation models are ultimately hypothetical models involving
latent variables., But to confirm a structural equation model we must link
the hypothetical structural model to observed variables by constructing,
for each hypothetical latent variable of the structural model, a number of
manifest variables that measure effects of the latent variable., The latent
variables of the structural model are then regarded as common factors of
the manifest indicator variables. The measurement model thus refers to the
structure expressed as a confirmatory factor analytic model of the
relationship between the hypothetical latent variables and their manifest
indicator variables. However, a quirk of the LISREL notation is that no
manifest indicator variable may be an effect of both a latent exogenous and
a latent endogenous variable at the same time. Furthermore, the distinction
in the LISREL notation between the structural parameters of the structural

equation model and the "factor loadings" of the measurement model

introduces unnecessary camplications in the algorithm and the computer code




needed to implement the estimation of these parameters.

In addition to the LISREL notation, a number of other notations have
been proposed, apparently in an attempt to find a general model that
contains all structural models--including structural equation models,
analysis of covariance structure models, and common factor analysis
models~—as special cases. Of note are McDonald's (1978, 1980) COSAN
(Covariance Structure Analysis) model and associated program, and Bentler's
(1979) model. McArdle (1979, 1980) proposed that all these models
and their notations are special cases of each other. He suggested that
these models could all be seen as special cases of a very simple but

general model in which there is no distinction notationally between a

structural model and a measurement model nor a need for the multiple levels

of nested orders of factors, as had been proposed by McDonald (1978) or
Bentler (1976). Bentler and Weeks (1980) proposed a matrix notation for a
general structural equation model that may be seen as a specialization of
McArdle's (1979). We shall use the Bentler and Weeks {1980) matrix
notation, with minor modifications, in the present discussion,

According to Bentler and Weeks (1980), there are in structural equation

models two basic kinds of variables, independent and dependent

variables. In structural diagrams dependent variables are those variables
to which arrows point from other variables. Independent variables do not
have causal arrows pointing to them. Now, an examination of any structural
diagram such as Figure 4.9 will show that both latent and manifest
exogenous variables (% and x) as well as latent disturbance variables (€)

have no causal arrows pointing to them., They are independent variables.

On the other hand, latent and manifest endogenous variables (M and y) have
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arrows pointing to them and are therefore dependent variables. We will now
see how this distinction between independent and dependent variables is
made in a matrix notation for structural equation models with manifest and
latent variables.

The "expanded” matrix equation representing the simple 16 variable
model in Figure 4.9 is given in Table 4.1. Dependent variables are
represented in a randam vector n* (eta star) that may be partitioned as
W o= [:I" R Z'] , where n‘ is a (transposed) random subvector of latent
dependent variables and y' is a (transposed) random subvector of
manifest dependent variables. (By transposed is meant that the array has
been rearranged so .that rows became columns and columns became rows. For a
single colunn. vector, a one dimensional array, transposing this vector
means the column becomes a row of elements—which we do here to make it
convenient to display the vector in the text). The number of latent
dependent variables in n' is indicated by m; the number of manifest

dependent variables in y' is indicated by m The total number of

2
dependent variables is indicated by m, where m = ;) + m,. The order

of M is thus m x 1.

Insert Table 4.1 about Here

Independent variables are all included in a single random vector &*
(xi star). This vector may be partitioned to distinguish between manifest
and latent exogenous variables and disturbance variables. Thus we may
write 5.*' = (§',x',8], where E' stands for a (transposed) subvector of

latent exogenous variables, 35_' stands for a (transposed) subvector of
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manifest exogenous variables, and €' stands for a (transposed) subvector
of latent disturbance random variables. The nunber of latent exogenous

variables included in E' is n the numnber of manifest exogenous

1;
variables in X is noi and the number of disturbance variables in E' is
equal to m (the number of dependent variables). The number of
independent variables in f._*' is thus n + n, +m=n, and so the

order of E* is n x 1.

The structural parameters q’ij that relate dependent to dependent

variables are included in the square m x m matrix A (alpha). Each row

of A corresponds to one of the dependent variables and contains the

T structural parameters of those other dependent variables that are causes of
that dependent variable. The structural parameter in the ith row and

Jth column of A thus represents the amount of change in the ith

variable that results from a unit of change in the jth dependent variable.
- 1f the element in the ith row and jth column is a zero, this means that
the jth dependent variable is not a cause of the ith dependent

variable. The elements of the diagonal of A are thus ordinarily zero,
meaning that a dependen;: variable does not cause itself. In recursive
models the order of the dependent variables can be arranged so that the
ﬁmatrix is lower triangular, that is, nothing but zeroes are above the
diagonal of A, implying that a dependent variable only causes other
dependent variables beyord it in their relative order. In nonrecursive
models such as those involving reciprocal causation, the A matrix will
have nonzero but distinct symmetric-counterpart elements both below and
above the diagonal.

The structural parameters that relate independent to dependent




w

149

variables are contained in the matrix I'* (gamma star). The matrix 'r‘*
[l’:e] is partitioned into the m x (gl + 32) matr ix I and the

m x m matrix A (delta). The rows of [ correspond to the different
dependent variables. The columns of [ correspond to the different

exogenous variables. A zero element in the ith row and kth column of

 Jor]

means that the kth exogenous variable is not a cause of the ith

variable. In the present example [ is a 14 x 2 submatrix. A contains the
structural parameters relating the dependent variables to their respective
disturbance variables. The rows of 4 thus also correspond to the different
dependent variables while the columns of A correspond to the different
disturbance variables. Normally 4 is a diagonal matrix (sometimes even an
identity matrix) with ieros everywhere except in the principal diagonal.
That 4 is a diagonal matrix reflects the fact that each dependent variable
is directly associated with a different disturbance variable, Thus §ii is
the structural parameter relating the ith variable to its corresponding

disturbance variable. In the present example 4 is a 14 x 14 matrix.

Insert Table 4.2 about Here

We have summarized the notation we will use in Table 4.2. Let us now

turn to a more campact form for the general matrix formulation of the
linear structural equation model with latent and manifest variables. This

form is given in the general case by:

‘; n =5[_n. +[_1::_A_][§_] (4. 2a)
y y 4

or more simply by
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N* = ATF + [wek (4.2b) .

The dependent variables in NM* are found on both sides of equations
4.2a ard 4.2b. This is not the usual form in which a structural equation
is written. Wiley (1973) recommends the following: Bring the expression
containing the matrix A from the right side over to the left side of the
equation and then factor n*from the resulting expression to obtain
(I - A)yn*= [* E*. If we then define B = (I - A), we may write the
structural equation in the canonical form more like that found in
econometric textbooks

BIF = [*8* (4.3).
Note that the diagonal elements of B (beta) must all be unity. The
nonzero off-diagonal elements of B will be the negative values of the
nonzero off-diagonal elements of A. This means that in interpreting the
nature of the causal effects one will have to mentally change the signs of
the beta coefficients in the matrix B. A common mistake is to fail to make
these changes.

If we premultiply both sides of e uation 4.3 by p:l we obtain the
"reduced form®™ of the structural model equation. The reduced-form equation
gives dependent variables totally as functions of independent variables.
The reduced form for equation 4.3 is:

nv = plpwe (4.4).

The goal of structural equation models is to show how relationships
among manifest variables (given by either correlations or covariances) can
be explained in terms of the structural equations relating the manifest
variables to other (possibly latent) variables of the model. To reach this

goal we will need certain “selection" equations that "select" the manifest
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variables in the subvectors y and x, respectively, from the larger vectors,
Tr and g, of variables (Bentler & Weeks, 1980). Consider the following

selection equations:

y = [0:1I] n and x = [9:2:‘9] E (4.5a)
y X
€
or <
y=G,M* ad x=g, E* (4.5b) ‘
gy = [9:5] is a partitioned (5\2 x m) "selection" matrix with 0 an ,
m,xm null matrix and I an m, xm, identity matrix. In other [

words, -c-;y contains zero elements everywhere except for a single element of
unity in each row placed in the appropriate column of gy to "select" a
corresponding manifest dependent y variable from n* Similarly, G =
(0:1:0] is an (n, x n) selection matrix with the first 0 on the left an

n,xn

2 =01
the right an n,

elements everywhere except for a single element of unity in each row placed

null matrix, I an n, x n, identity matrix, and the 0 on

X m null matrix. In other words, gx contains zero

in the appropriate column of gx to select a corresponding manifest
independent x variable from 5*. To illustrate, for the model in Figure 4.9,
gy is a 12 x 14 matrix with 0's for every element except for a single 1 in
each row in the column corresponding to a manifest endogenous variable Y
inn*. Simi.larly,.c_;x isal x16 matrix {0 1 00000000000005]
with mnity corresponding to the manifest exogenous variable X, in the
vector g*' = [gl,gz,g'].

We also need to define a matrix reflecting the variances and

covariances among the independent variables of the model. As explained

above all independent variables are included in the random vectorg. Thus,
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the matrix of variances and covariances among the independent variables is
given by the matrix

¢ = EEE) (4.6)
where ¢ is the Greek letter phi. The model requires that exogenous
variables are independent of disturbance variables (i.e., the model is
sel f-contained) . This requirement is expressed mathematically by the
requirement that §{§_ [5‘ :35']} = 0, where E( ) is the expectation operator.
The effect of this requirement appears in the matrix and may be seen in a

partitioning of this matrix as

¢ = ng gxx 0 (4.7)
0. 0 %ee

where ¢g = E(£€'), ¢, =EEx'), ¢ =E(xx') and & =E(cc).

£x X

The following tems are set equal to zero in Bg. 4.7: §egc, Qxe’
QEE' and Qex'
From the reduced-form By. 4.4, the selection equations Bq. 4.5 and

0 o

Eg. 4.6, we are able to derive the variance-covariance matrix I
contains the "predicted" variances and covariances among the manifest
variables, where by "predicted" is meant that the variances and covariances
take on the values they would have if they were generated as functions of
the structural parameters of a hypothetical structural equation model, The
matrix equations which display -’-:-0 as functions of structural parameters
and covariances among independent variables are as follows:

Lyy ZEyx
2, = (4.8)

hxy Zxx




st bt S ot R A

153

where, according to the model,

Ly = Ey') = g8 rreres7lg 1, (4.9a)
Ixy = ExY') = gxgz*'g'l'gy' ' (4.9b)
EXX = -E-"'-(P.(.) = 9)(29)(' * (4.9c)

The implications of Bq. 4.8 and Egs. 4.9a,b,c are that a predicted

or hypothetical variance covariance matrix ?0 for the set of observed
variables in randam vectors x and y may be derived from the parameter
values of a hypothetical structural equation model. Therefore, the degree
to which the hypothetical structural equation model reflects reality is
given by the degree to which the hypothetical matrix EO is thé same as

the empirical variance-covariance matrix I for the same variables (in x and
X) obtained from measurements of these variables in the world. To make
this camparison between the hypothetical matrix £, and the empirical
matrix Z is the goal of a confimatory analysis using structural equation

—-—

models with latent and manifest variables,

Specifying a Structural Model

One can obtain different models for the same set of manifest and
latent variables in 8* and N* by assigning different values to the
respective elaments of the matrices B, I'*, and Q, known as "parameter
matrices", in the structural equation model. In other words, to define a
structural equation model with observed and latent variables one must
specify the nature of the elements of the parameter matrices of the model.
Any particular element of thése matrices may be specified [to use
terminology popularized by J8reskog (1973)] in one of three ways:

(1) As a fixed parameter, given a value specified prior to the

i
!
'
;




154

E, analysis which does not change throughout the estimation process.

' (2) As a free parameter, whose value is to be estimated from the

data conditional on the values of fixed and constrained parameters
in the model.

(3) As a constrained parameter, whose value is yoked together with

certain other parameters that are all constrained to equal the

same value. This value may be free to be estimated corditional

on the values of fixed and other sets of constrained parameters.
Specification of a structural model is tied intrinsically to the question
of identification. Consequently, we shall discuss identification and then
illustrate its application in regard to the model in Figure 4.9.

Identification. It is essential to specify a structural equation

model in such a way that the model is identified. Whether a model is
identified concerns, in the broadest sense, distinguishing one theory from
another theory when operationalizing theory with data (L'Esperance, 1972).
With structural equation models, identifying a model involves specifying a
priori, according to theory, the fixed values of certain parameters of the
model so that (a) no other theoretical model (except one t;hat differs
trivially from it in terms of different units of measurement) can have the
same fixed parameter values, but different free parameter values, and (b)
still generate the same hypothetical covariance matrix §0 for the
observed variables. In other words, identifying a structural model means
’ fixing the values of an appropriate set of parameteré in the model so that
the hypothetical covariance matrix §0 assnciated with this set of fixed
parameters will be unique for each distinct complementary set of free

parameter values.




Identification also concerns fixing enough parameters of the
parameter matrices B,['*, and gso that the remaining parameters can then
be solved for in terms of the values of the covariances among the manifest
variables and the values of the fixed parameters. If an insufficient
number and/or inappropriate set of parameters are fixed a priori, the
model may not be identified. Then there may be no consistent solutions for
the free parameters of the model. 1In t! s regard J8reskog (1979) has
indicated the following guidelines for evaluating the indentification of
one's model: Let s be the number of free and constrained parameters
(each distinct constrained parameter being counted only once) in the
matrices B, I'* and Q Then a necessary (but not sufficient) condition that
all of the free and constrained parameters of the model are identified is

that

s £ (Qz +ny)(my + n, +1)/2
where the expressi;n on—the—righz is the number of independent elements of
the hypothetical variance-covariance matrix §0 for the full set of
observed variables, with n, X variables and m, y variables.

To understand the way identification of a free or constrained
parameter may be determined by some elements of the hypothetical covariance
matrix §O and the values of the fixed parameters, let us return to
Eqs. 4.9a throuwgh 4.9c. These equations imply that the elements of the
variance-covariance matrix _}_:o are functions of the values of the fixed
and free parameters in the parameter matrices of the model. If one can

find a way to solve uniquely for a given free or constrained parameter from l

elements of the variance-covariance matrix §0 and the values of the fixed
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parameters, then the free or constrained parameter is identified. If
there is only one way of using elements of §0 to solve for a given free

or constrained parameter, then the parameter is just identified. If

there is more than one way (using different elements of _E_o) to solve for

the parameter, then the parameter is overidentified. 1If all free and

constrained parameters are just identified, then the model is just
identified. If in addition some, but not all, of the free and constrained
parameters are overidentified, then the model is partially overidentified.

If all free and constrained parameters of the model are overidentified,

then the model is overidentified, Finally, applying the term "identified"

to a model implies that the model is at least just identified.

To illustrate identification, let us consider the identification of the
parameters of the model in Figure 4.9 represented by the system of

simul taneous equations in BEq. 4.1. We assume that in the phi matrix for the
model in Figure 4.9 the exogenous variables are mutually uncorrelated with
unit variances and that the disturbance variables are also mutually
uncorrelat'ed; that is, (2;5 and gu are identity matrices, Q;x =0, and

Q“ is a diagonal matrix. We may then derive the elements of the
hypothetical variance-covariance matrix for the observed variables by Egs.
4.9a through 4.9c. Actually, one does not need in practice to use Bgs. 4.9a
through 4.9c per se to find the variances and covariances among the

manifest variables according to the model. One can also use processes
similar to those discussed in connection with Condition 10 in Section 2 to
express correlations in terms of path coefficients. These processes involve

rules one can apply to the parameters in structural diagrams to determine the

variances and covariances in a rather straightforward way (cf. Costner,
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1969; Heise, 1975; Namboodiri et al., 1975). To illustrate these
procedures for finding covariances, consider that part of the model in Figure
4.9 that deals with causes of ‘_y3,...,3(6, which we have reproduced in

Figure 4.10.

Insert Figure 4.10 about here

This submodel implies that the covariance between y, and y, is

2

equal to @& 9419' 2, where o is the variance of M

=31 1 1°
The basis for this implication is that Y3 and Yq Ahave the latent
variable 111 as a canmon cause. Thus, their covariance, indicated by
O34/ should be determined by the extent to which they share cammon
variance attributable to 7_11, which is given by multiplying the product of
the parameters relating Y3 and Yy to Z]l times the variance of
n- However, for simplification we will require that the variances of

all latent endogenous variables equal unity. Hence, using the same reasoning,

the camplete set of covariances among the manifest indicators of gl is:

934 = 231 % (4.10)
935 = 251%;) (4.11)
936 = %1% (4.12)
%5 = %1% (4.13)
%6 = M1%:1 (4.14)
956 = %1% (4.13)

We may also obtain these same results by applying Bgs. 4.9a through
4.9c where we can take advantage of the fact that the fixed parameters set

equal to zero inB=1 - A,T*, and ¢ allow us to simplify expressions for
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these same covariances as in Egs. 4.10 throwh 4.15. In any case, however
we obtain them, we have six equat’ions and four unknowns, namely 931, %l,
gSl' and (_Ysl. This means we may solve this system of six equations in

a One solution

more than one way to obtain estimates of 9'31’ ceer Xgqo

for these parameters is given by:

By = +(0;,0,./9,0 > (4.16)
¥, = (0'34045/ Lo (4.17)
) = +(035945/%3,) (4.18)
Oy = +(T36%6/ %) (4.19)

But Egs. 4.16 through 4.19 do not represent the only possible solution for

the unknown parameters Parameters @ .. throgh &

E3p 0 1% %31 Y61 2T€
overidentified-because there is more than one way to solve for each of the

four unknown parameters in terms of different elements of 2:0' For example,

we used Egs. 4.10, 4.11 and 4.13 to obtain the solution for @31 in Bg.

4.16. But we could just as easily have used BEgs. 4.11, 4.12 and 4.15,

respectively, to solve for & as

=31

@ y1/2 (4.20)

31 = +(935936/ %6

Thus 9'31 is an overidentifed parameter, as are the other unknown parameters

of this system of equations.

By similar procedures we can solve for parameters Qg eves dlo 2

in connection with the four indicators of )_12 and for parameters 711 1

evey Y14 1 in connection with the four indicators of _El. Because in
- 14

each of these cases there are four indicators of a common latent variable,

the structural parameters relating these indicators to the common latent

variable are overidentified.
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The free parameter g&n relating 7_11 to [Iz is also an over—
identified parameter. To see this consider that the covariances between
different pairs of manifest indicators of different latent variables may be
obtained as the products of structural parameters in causal paths that
radiate out fram a single latent variable and terminate at each end with one
of the manifest indicators (see Figure 4.11). Thus, applying this principle

to the causal paths involving the parameter 5221 , we obtain

937 = ¥3n% % (4.21)
T8 T %1%1%: (4.22)
939 = %1%1%; (4.23)
93,10 = %1%1%0, 2 (4.24)

Any one of these equations, as well as others involving covariances for pairs
of variables from other sets of indicators of n and oY respectively, may

be used to solve for gz
in each of these equations are obtainable using other eleaments of _2_20.

1! because the solutions for the other parameters

Parameter @, . is therefore very much overidentified. By similar

=21
reasoning we can show that -Yll and _712 are also overidentified.. For
= = o o
example, gx2y3 _leqgl, gx2y4 _)’12_41, and so on

c_$31 and gal are already determined by other elements of §0.

Insert Figure 4.11 about Here

The structural parameters 533 through -814 14 associated with the
14

causal paths of disturbance variables 53 through §1 4
identified, for they may be determined from the respective diagonal

of Figure 4.9 are

elements of —;O once the other parameters of the model have been




determined from the off-diagonal elements of _2}0. That is, the values

estimated for §33

in variables that cannot be accounted for by the functions indicated in

through §l4 14 will reflect the residual variances
’

the model.

The structural parameters _811 and 5322, associated with the paths
of the disturbance variables E_l
variables 1, and UPY will not be identified unless one makes some

and §2 for the latent endogenous

specification before analysis that, in effect, specifies the variances of
the latent endogenous variables Dl and !_]2 We have already required
the variances of latent endogenous variables to equal unity; in other words,

we require the following equalities to hold:

2 2 2 2

= y =

9'"1 _811 + -711 + 212 1 (4.25)
2—8 2+Ol«2=1 (4.26)

o, %22 T-a

These equalities properly constrain solutions for _511 and _522. Some
.camputing algorithms for structural equation analysis provide for
specifying constraints among parameters such as these (Bentler and Lee, 1982).
When they do not, the user must specify arbitrary values for the parameters
to fix the metric of their respective latent endogenous variables.

In sum, because all parameters not involving disturbances of the model
in Figure 4.9 are overidentified, the model may be said to be overidentified.

It is important to emphasize that the free parameters of the model are
just identified or overidentified depending on the assumptions

(predictions) made in specifying values for the fixed parameters. It may

not be obwvious, but the model in Figure 4.9 involves a large number of




fixed parameters. For example, the absence of an arrow from 51 to 1)2

means that the parameters _721 is equal to, or fixed, at zero. The same

is true for the absence of an arrow from X, to '7_12. Furthermore, every
disturbance variable is regarded as a cause of one and only one manifest or
latent endogenous variable, All arrows emitting from a disturbance to any
other variable have parameters fixed at zero (i.e. off-diagonal elements
ofé must be zero). Furthermmore the disturbance variables are presumed to
have unit variances and to be mutually uncorrelated, with their covariance
matrix §¢¢ fixed to be an identity matrix. Two other instances, which do
not exhaust all possibilities, are that (a) manifest indicators of latent
variables are caused by one and only one latent variable, and (b} the
causal relationship between tll and !)2 is recursive, implying that g.lz

=0, (i.e. 112 is not a reciprocal cause of Dl). Finally, the model
contains no constrained-equal parameters, although this condition could be
implemented if we so desired. For example, we might theorize that @

31

and 941 in By. (4.11) are of equal magnitude. One result of this

specification would be that the parameter 9}51 is overidentified (i.e.,

one would have, in effect, two unknowns in three equations).

Implications of identification for testing goodness of fit. As

discussed earlier, the degree to which a structural equation model reflects
reality is assessed by the degree to which 20’ the hypothetical variance-
covariance matrix generated according to Bgs. 4.9a through 4.9c, is similar
to, or has a good fit with, the matrix &, which is the unrestricted,

empirical variance-covariance matrix for the same manifest variables. In

practice, ;0 and __).:'_ are replaced by sample estimates, namely §O and ‘S‘,




162
respectively. Identification has important implications for testing the fit
between 20 and S. Consider, first, that there is only one possible solution
for the estimate of a just identified structural parameter. This suggests

that estimates for the free and constrained parameters of a just identified

model can always be found in such a way that the resulting .5:50 matrix

exactly equals the matrix S. Just identified models always have a perfect
fit to data. But such good fits are tautological and trivial, and in no way
indicate the scientific usefulness of a model. On the other hand, because an
overidentified parameter of a model may be estimated in several ways (using
different sets of elements of the sample variance-covariance matrix §),
different estimated values for the parameter can be obtained. More
importantly, the different estimates for an overidentified parameter may be
inconsistent (Costner, 1969). In practice, the methods used to estimate an
overidentified free or constrained parameter usually take some weighted
average of the different solutions for the parameter. As a result, there is
some freedam for the sample variance-covariance matrix $ to differ from the

estimated hypothetical variance-covariance matrix 20. Thus,

overidentified models can be falsified when the discrepancy between S and
220 is statistically significant. It follows that an overidentified

model is essential for testing the theory on which the identifying
conditions are based.

Since structural equation models with latent variables are a bit more
canplex than those involving only manifest variables, the task of assessing
identification is more difficult., Furthermore, because the emphasis is on
fixed parameters of the various parameter matrices of the model (essential

for the camputing algorithms), the identification problem focuses on
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parameters and not equations as does the traditional literature on ?
structural equation modeling with manifest variables. ne can consult

Fisher (1966), Schmidt (1976), Wiley (1973), Werts, J8reskog, and Linn

(1973) , or Koommans and Hood (1953) for general principles of

identification. Bmpirical examples are given by J8reskog (1979a, 1979b).

Estimation.

Basic principles. In the case of structural models with latent

variables, we make the assumption that the distribution of the manifest
variables is a function of their variance-covariance matrix. Making this
assumption allows us to seek estimates of the free and constrained
parameters of the model in the following way: Use as estimates those values
for the free and constrained parameters of the matrices B,I'*, and @ that
together with the values of the fixed parameters make the estimated model
var iance~covar iance matrix éo for the manifest variables as much
like the sample variance-covariance matrix $ as possible. We will now show
how this principle is implemented in the major methods used to estimate
parameters of structural eqguation models with latent and manifest variables.
A measure of the degree of similarity or f£it of the matrix _23:0
to the matrix S is given by a function of the elements of these matrices

known as a loss function. The termm "loss function" is derived from the

idea that when estimating a parameter one takes a "loss" when the value
chosen as an estimate of the parameter differs from the actual value of the
parameter. The loss function thus provides a measure of the degree of this
loss by measuring some function of the discrepancy between estimate and

parameter. A desirable property of a loss function is that it should take
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on a large value when the discrepancy between the estimate and the parameter

estimated is large and equal zero when there is no discrepancy. 1In
addition, when a number of parameters are to be estimated, the loss fur.ction
should attempt to combine the individual losses into an overall measure of

loss. In the case of structural models with latent variables, we will seek

estimates for the free parameters of the structural model so that the
estimated variance-covariance matrix §0 derived from these free
parameters and the fixed parameters will minimize a loss function defined on
§0 and S.

Important methods. A number of loss functions are available for this

purpose. To begin with, one can use least squares (LS) and minimize the

function

s = erl(§ = F)' 6~ Z)

This method of estimation minimizes the sum of squared differences between the
elements of S and §0 The matrix (S - &) represents the element—by-—

~

element difference between S and -Z-;O' L is derived using Eqs. 4.9a

0
through 4.9c with estimated values for the free and constrained elements and

a priori values for the fixed elements of the matrices B,I'", and $. The sum

of squared differences between the elements of the corresponding rows of

(s - 20) is given by the diagonal elements of (S —:T._,o)' s - éo) , @ square matrix.
The sum of the diagonal elements of a square matrix is known as the trace

of the matrix and is denoted by tr[ ]J. Thus the sum of the diagonal

elements of (S - ::‘_IO)' (s - 20), or the trace of this matrix,

gives the sum of squared differences between corresponding elements of S and

~

;0. In other words, the criterion would force us to seek values of

¥
11




165

the free and constrained elements that would make the sum of squared
differences between the elements of the matrices § and ;l_:.,o as small b
as possible. Note, however, the term "least squares estimation" in this
case does not refer to the ordinary least squares estimation process used
with models of manifest variables.
Maximum likelihood estimation begins with a sample from a population
whose distributional type is known (e.g. the multivariate normal
distribution) and seeks those values for the unknown parameters of the
distribution that would make the likelihood of obtaining the sample a
max imum. If we used the loss function of maximum likelihood estimation, we
would seek to minimize the function
ML = loglg_'-ol + tr(§§o-1) - logigl - (52 +32)
which approaches zero as S and ‘2:‘,0 became the same. logléol
denotes the logorithm of the determinant of the square matrix _éo.
The determinant is a number obtained from the elements of the matrix in a
way too complex to describe here. Note that if § and' io are equal, then
loglgol and logiS| will be the same and their difference will be

~

equal to zero. Similarly if S and };o are the same, }.;0_1 will be the

matrix inverse of S. Hence, (~S-;O-l) = I, an identity matrix,

whose diagonal elements are all unities, the sum of which, given by

the trace function, equals (5'2 + gQ) , the number of manifest variables.
Thus, the difference between tr(S .‘;,30-1) and (m, + n,) will

equal zero in this case. When ML equals zero, it is at an absolute minimum.

This absolute minimum is never attained when S and »§O are different,

but it may be possible to find estimates for the free and constrained
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elements of B, [¥ and ¢ that make éo as much like S as possible
according to this criterion.

Or one can use the loss function of generalized least squares, in which
case one would minimize

Gts = tr(1 - g7 )2
As explained previously__s_—lé0 will be an identity matrix (I) when
S and éb are identical. Hence the GLS criterion also approaches zero
as S and éb became the same.

An advantage of the least squares (LS) method of estimation is that it
may be implemented without making any distributional assumptions about the
observed variables. On the other hand, the least squares method of
estimation does not lend itself to testing the statistical significance of
differences indicated by the trace function. 1In contrast, statistical tests
are possible with the maximum likelihood and the generalized least squares
methods. To use statistical tests with the maximum likelihood method, the
distribution of the manifest variables should follow the multivariate nommal
distribution. If this assumption is questionable, then the generalized
least squares (GLS) procedure may be used. Generalized least squares also
makes no distributional assumptions, but still allows for statistical tests.
Finally, it is extremely important to note that statistical inference based
on maximum likelihood and generalized least sgquares estimates is possible
only with large samples. One reason for requiring large samples is that the
chi square statistics used to test the significance of the maximum
likelihood and generalized least squares loss functions are only
asymptotically distributed as chi square. That is to say, the sampling

distributions of these chi square statistics only approximate chi square

it oo i s SR STRLNE




distributions in large samples.

The algorithmic procedures for obtaining estimates for the free and
constrained elements of the linear structural equation model with latent
variables are beyond the scope of this treatment (cf. JYreskog, 1973;
Bentler & Weeks, 1980). One should know, however, that the procedures are
iterative and quite time-consuming, even with large, high~speed computers,
and may require considerable core memory as well. These procedures
estimate all of the unknown (free and constrained) elements of the matrices
B, [* and @ at the same time. This means that lack of fit between data and
a model can be spread across all parameter estimates to force an optimal
fit. The result is a tendency to obscure which fixed elements are mainly
respon.sible for the lack of fit of the model to data. This is a cammon
problem for all "full-information" estimation techniques; that is,
techniques that estimate all free and constrained parameters in a model
simul taneously (cf. Johnston, 1972). On the other hand, if the conditions
for confirmatory analysis have been reasonably satisfied, then the estimates
furnished by full-information techniques are both consistent and efficient.
Unfortunately, applications of latent variable structural modeling in
psychology, like those for manifest variables, tend to be extremely weak in
regard to attention to the conditions essential for confirmatory analysis,
especially in connection with the unmeasured variables problem (Cliff, Note
1). We will discuss these points later in this section.

Computer programs. A number of camputer programs are available for

camputing the estimates of the parameters of structural equation models.
The program LISREL IV prepared by J8reskog and S8rbom (1978) is perhaps

the most widely availdble program at this time for structural models with

saisni
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latent variables. However, its use of the notational distinction between
the measurement model and the structural equation model is unnecessary and
leads to difficulties in treating the case where a manifest variable is
regarded as simul taneously an effect of both latent endogenous and latent
exogenous variables. Furthermore, in estimating variances of disturbance
variables, LISREL IV frequently produces "Heywood" cases where the variance
estimates are negative. However, a program that implements the structural
equation model used in this book would not have Heywood cases when
estimating the variances of the disturbance variables, for these could be
fixed arbitrarily to unity. The relative contribution of a disturbance
variable §i would then be indicated by the square of the structural
parameter §ii' which is unaffected by the sign of 511' COSAN, a program
informally distributed by R. P. McDonald based on a general model for
covariance structure modeling (McDonald, 1978), can be easily used with the
notation used in this book. COSAN has the additional feature of permitting
both max imum-1likelihood and generalized least squares solutions for
parameter estimates. Bentler is also developing a program to implement the
model of Bentlex: and Weeks (1980), which should be readily adaptable to the
notation of this book. At this writing J8reskog and S8rbom (198l) have
just released version V of the LISREL program. J3reskog states (personal
comuanication) that LISREL V will be distributed to replace all versions of
LISREL IV now in use. Although LISREL V still does not provide for
generalized least squares estimation and adheres to the model equation of
LISREL IV with attendant problems with Heywood cases in estimation of

variances of disturbance terms, the main improvement has been a 10-fold

reduction in camputing time required to obtain maximum likelihood estimates
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of the free parameters of a structural equation model. This has been
brought about through the use of an improved approach to determining
initial values for estimates of the parameters from which to begin the
iterative process. The improvement in computing speed should make LISREL V
very popular in spite of the minor difficulties we have mentioned.

We continue now with the question of significance tests for the

goodness of fit between Z and X, using S and Z,.

Significance Testing and Goodness of Fit Tests.

Testing the support for a model. Previously in connection with

Corditions 9 and 10 in Section 2 we discussed how to evaluate the empirical
support for a confirmatory model based on manifest variables. Condition 9,
we said, concerns testing whether certain causal parameters are different
from zero. It was pointed out that causal relations are indicated by
nonzero structural parameters in structural equations. Thus, empirical
support for causal relationships is given by statistical tests that reveal
that the corresponding estimates of free structural parameters differ
significantly fram zero. Condition 10, on the other hand, concerned the
fit of a model to data. This, we pointed out, can be assessed by taking
advantage of the fact that the estimated and fixed structural parameters of
a structural equation model determine an estimate of a hypothetical
variance-covariance (correlation) matrix for the manifest variables under
the assumption that the model is valid. If the estimate of the
hypothetical variance-covariance matrix derived from the fixed and

estimated free parameters of the structural equations does not differ

significantly from the observed (unrestricted) estimate of the
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variance-covariance matrix for the manifest variables, then we say that the
model fits or is consistent with the data.

In the case of structural equation models with latent variables, we
can perform tests to detemmine whether both Conditions 9 and 10 are
satisfied, However, how one performs these tests will be constrained by
the kinds of statistical tests that are possible with latent variable
models. As described briefly above, all of the available algorithms for
estimating the free parameters of a structural equation model use
full-information methods of estimation. This means all free and
constrained parameters of the model are estimated simultaneously. These
full-information algorithms usually provide three kinds of statistical
tests to test hypotheses about the parameters of a model: (a) confidence
interval tests applied to estimates of individual free parameters of the
model, (b) tests canparing nested models, and (c) tests of overall goodness
of fit of 20 to S. The first two ways of testing statistical
hypotheses lend themselves to methods for assessing whether Condition 9 is
satisfied, that is, whether certain free structural parameters are equal to
zero or not. The third way provides a basis for assessing whether
Cordition 10 concerning the goodness of fit of the model to data is
satisfied. However, ways (b) and (c) are special cases of the same chi
square goodness-of-fit test and will be discussed together, although they
concern different substantive questions.

Tests of individual parameters. The latent variable literature

contains little information about the use of confidence intervals to test

hypotheses about individual free parameters. Nevertheless, confidence

interval tests are possible if parameter estimates are obtained by either




full-information maximun—-likelihood or general ized least-squares

estimation. The tests are based on estimates of the standard errors of the
free parameter estimates derived from the "information matrix", which is
generated as a byproduct of the estimation algorithm (cf. Bentler & Weeks,
1980; J8reskog, 1973). The standard errors for the free parameter
estimates, however, are conditional standard errors; they are conditional
on the fixed and constrained parameters of the model. Thus, confidence
interval tests of whether free parameters associated with expected causal
pathways differ significantly from zero will be meaningful and unbiased
only if the specifications regarding fixed and constrained parameters have
been determined to have an acceptable goodness of fit to the data. In any
case, one has estimates of standard errors and consequently confidence
interval tests for just those free parameters of interest when assessing
satisfaction of Condition 9.

The application of these confidence interval significance tests should
be straightforward. For each free parameter of the model one can construct
a confidence interval around the estimate of the parameter using the .
estimate of the standard error of the parameter. If the confidence
interval does not include zero, then one can conclude that the parameter
differs significantly from zero, thereby indicating a causal connection
between the variables in question.

However, when the researcher seeks to test hypotheses about a number
of different parameters of the model with a series of tests (i.e. one test
per free parameter), he or she may want to control for the probability of

making at least one Type I error of incorfectly rejecting a null hypothesis

when it is true, over the series of tests. To do this the researcher will




have to have a way to compute this probability. This can be done exactly

if one knows the tests are mutually independent and the level of

significance of each test. But in most situations one will have a series
of tests of parameters estimated from a single sample, and the tests will
not be mutually independent. It follows that the conditional probability

of making a Type I error on a test given one has already made a Type I

error on a previous test will not be given by the nominal level of
significance used for the test. A number of general procedures are
available for dealing with this situation, many of which revolve around the
Bonferroni method of defining more stringent levels of significance for
individual tests of significance. These procedures, which are reviewed in
Larzelere arﬁ Mulaik (1977) and Stavig (198l1), have the major drawback of
being less powerful than procedures that involve a series of tests known to
be statistically independent. Nevertheless, power may not be a major
concern with the large samples required for goodness—of-fit testing with
the latent variable methods . The alternative to using confidence
intervals for testing hypotheses about individual parameters is based on
the overall goodness-of-fit tests., We will first describe the
goodness-of-fit test and then return to the alternative procedure for
testing individual parameters. (Before departing from this point, we

should mention that the logic described above for controlling for Type I

errors in latent variable models applies also to manifest variable models) .

e E PR A T Ao

Goodnesg—of-Fit Tests. After one has obtained maximum likelihood

estimates of the free and constrained parameters, he or she can then
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generate the estimated model variance-covariance matrix io and
compare this for goodness of fit with the sample variance~covariance
matrix S estimated in the usual way under no restrictions. To do this
one can compute the statistic

F=N [logliol - logls| + tr(§§0_l) = (my + n)1/2

which, when the sample size N is very large, is a;brox;ﬁately distributed
as chi square with (92 + 22)(@2 + o, + 1)/2 - s degrees of freedom.
S is the number of indeperdent free and distinct constrained parameters
of the model. 1If the sample value of this statistic exceeds the critical
value of chi square with the respective degrees of freedam at the specified
level of significance, the model is rejected for lack of fit to the data.
However, one must keep in mind that this test actually concerns a test of
the appropriateness of the values chosen for the parameters fixed to
specify the model. That is to say, the statistical hypothesis tested by
the overall goodness-of-fit test is that the fixed parameters' values are
what they have been fixed to. The test does not test hypotheses about the
free parameters of the model; these have been estimated in such a way as to
make the fit of the model to the data as close as possible, conditional on
the values of the fixed parameters. And so, any lack of fit will be a
result of the fixed parameter values and not the free parameters. Thus, if
the test yields a significant goodness~of-fit statistic, one then must
consider that Condition 10 is not satisfied, that one's specification of
the model in terms of fixed and constrained parameters is possibly not
correct. On the other hand, if the overall goodness~of-fit test statistic

is not significant, it means that Condition 10 is satisfied, that is, the

specification of the model is consistent with the data.
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Tests of individual parameters using the F statistic. One can use

the above chi square goodness-of-fit statistic F to test hypotheses about
individual (and even groups of) parameters in a model. Thus, this

statistic can also be used to assess whether Condition 9 concerning

hypotheses about the free parameters of the structural model has been
satisfied. To apply the chi square goodness-of-fit statistic F for this
purpose, one must make a comparison between two models: one with the
parameter in question fixed to the hypothesized value, the other a model

that is identical to the first model except that the parameter (or

parameters) in question is (are) free to be estimated. The model with the
value of the parameter(s) fixed by hypothesis will ordinarily yield a
larger chi square statistic than the one with the same parameter(s)

allowed to be free. The difference between these two chi squares is also a

chi square statistic, known as the difference chi square, with degrees of

freedam equal to the difference in degrees of freedom between the original
chi squares. If the difference chi square is significant, one rejects the
null hypothesis about the fixed parameter(s). This approach is illustrated
below.

A priori sequences of tests. Bentler and Bonnet (1980) have recently

reviewed the problem of conducting a series of independent statistical
tests about individual parameters of a structural equation model with
latent variables. The purpose of such a series of tests is not to explore
data, but to test a number of a priori hypotheses in connection with the
parameters of a particular model included within a nested sequence of

models. According to Roy (1978) one can construct a series of independent

statistical tests of individual parameters by specifying an a priori
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sequence of nested models whose goodness of fit to the data is to be
tested, beginning first with a test of the goodness of fit of an initial
overidentified model. Each subsequent model to test must differ from the
previous model only in having additional fixed parameters over and beyond
those of the previous model. Each model, therefore, is a specialization of
the previous model in having the previous models' same fixed parameters as
well as additional ones. Once the a priori sequence of models has been
specified, then a sequence of statistical tests is performed as follows:

For such a sequence of models, let F, and F;4q be the chi

square values with degrees of freedam gi and d., ,, respectively,

=i+l

for the goodness~of-fit tests of models i and i+l, respectively. Then
the test of the effect of not fixing the additional parameters in the ith
model, as is done in the (i + 1)st model, is given by the difference chi
square value EQ =F;,, ~E;, which hasd = (d;,, - d;) degrees of
freedam. This seque—nce of—tests continues unzil one_rejects the null
hypothesis. To go on beyond this point with tests of subseguent models
would be logically inconsistent, because subsequent models would contain
parameter values that had been rejected in some previous test. With such a
series of tests one could test the specification of a model (condition 10)
and then examine the causal connections between variables (condition 9).
(See also the discussion in Mulaik (1972), pp. 411-417 or larzelere and
Mulaik (1977) for the description of analogous tests in multivariate
step-down regression).

It must be pointed out that to achieve a series of independent
statistical tests with an a priori, nested sequence of models, one

pays the price of being constrained to testing hypotheses about parameters
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in the order in which they are fixed in specifying the nested sequence of
models. Furthermore, because the sequence of statistical tests ends when
a null hypothesis (about the fixed values of one or more parameters) has
been rejected, it is essential to arrange the testing of hypotheses about
parameters in the order of their relative importance.

Thus, in defining a sequence of models so one can test hypotheses
about different parameters of a structural equation model, one will first
test hypotheses about those parameters that, when fixed, specify a
measurement model relating the manifest variables of the model to different
(usually latent) hypothetical construct variables. Next, if the previous
hypotheses are accepted, one will test hypotheses about those parameters
that, when fixed--in addition to the previously fixed values--specify an
overidentified causal structure among the hypothetical construct variables
of the model. Then, if the values of previously fixed parameters are
consistent with the data, one will go on to test whether further fixing to
zero the values of the structural parameters linking hypothetical construct
variables to one another is consistent with the data. If so, one will
reject the causal structure among the hypothetical construct variables and
then test whether additionally fixing to zero the structural parameters
relating the manifest indicator variables to the hypothetical construct
variables is consistent with the data, This last test is a test of whether
any structure exists at all among the manifest indicator variables. We
will now illustrate a nested sequence of models in which such a series of

tests may be performed.

A nested sequence of models. To illustrate how, in connection with
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the model in Figure 4.9, one may construct a priori a nested sequence of
models, each subsequent model more restricted than the previous, consider the
structural diagrams in Figures 4,12 - 4.16. Figure 4.12 is a diagram of a
just identified model for the 13 manifest variables of the model in Figure
4.9. According to this model, 12 of the 13 manifest variables are dependent
on nine exogenous latent common factor variables plus 12 disturbance
variables. Three of the latent variables, §1, Dl' and 1)2, correspond
to the same-labelled latent variables of the model in Figure 4.9. The
remaining six latent variables, _E3 through 58 (represented in Figure 4.12
by slightly smaller circles than those associated with 51' Dl’ and 32)
are included only to illustrate a just identified model that contains as a
specialization the more restricted, overidentified model in Figure 4.9. The
thirteenth manifest variable (3_2) in Figure 4.12 is a perfectly reliable
exogenous variable. Under the assumption that all latent variables are
specified to have unit variances, the number of free parameters to estimate
in this model is 91: (a) 12 structural coefficients relating disturbances to
manifest variables, (b) 45 independent covariances among the 9 latent
exogenous variables and the single manifest exogenous variab'le Xo (c) the
variance of x,, and (d) 33 structural coefficients relating the 9 latent
exogenous variables to the 12 manifest endogenous variables. Since the
numbe: of free parameters to be estimated (each correspording to one of the
single or two—headed arrows in the diagram) equals the number of variances
and covariances in the population covariance matrix for the 13 manifest

variables, the model is just identified. The model's covariance matrix 80
-

will fit the population covariance matrix § perfectly.

1
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Insert Figure 4.12 about Here

Figure 4.13 is a more restricted, over-identified model representing
the model to use to test hypotheses about the specified parameters of the
measurement model portion of the model in Figure 4.9. In this model a causal
structure is specified relating the manifest variables Y3 through Yi4
to the latent variables 51, LN and _7]_2 of the model in Figure 4.9. But,
in contrast to the latent structural model in Figure 4.9, no causal structure
is specified in Figure 4.13 among the variables 51, Xo0 Dl and 'Qz.
The model simply allows these variables to be correlated, but in an
unspecified way and indicates this by the double-headed arrows between these
variables in Figure 4.13. The reason the model of Figure 4.13 is a
restriction of the just identified model in Figure 4.12 is because six of the
nine latent exogenous (common factor) variables of the just identified model
have been effectively deleted from the model. This has been accompl ished by
specifying that the structural coefficients linking the six latent exogenous
variables with the 12 manifest variables in Figure 4.12 are zero and that the

)
covariances of the six latent variables with the other manifest and latent

A

exogenous variables are zero also. In other words, numerous parameters of

the model in Figure 4.12 have been restricted or fixed to equal zero.

Insert Figure 4.13 about Here

A test of the specification of the Iixed parameters of the model in
Figure 4.13 is then given by a comparison of the goodness of fit statistic

obtained for the model in Figure 4.13 to the goodness of fit statistic
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obtained for the just identified model in Figure 4.12 (which is equal to
zero) .

Figure 4.14 is a structural equation model developed from the
measurement model in Figure 4.13 by specifying a causal structure among the
var iables §l, X5 My and .DZ' In fact, it is the model described
previously in connection with Figure 4.9. In this case latent exogenous
var iable §l and manifest exogenous variable X, are seen to be direct
causes of only Dl’ while ﬂl is a direct cause of N,- Exogenous
variables &, and x, are also presumed to be unrelated. The latent
structural model in Figure 4.14 is more restricted than the model in

Figure 4.,13. If in Figure 4.14 we allowed E, and X, to covary,

1
and included causal arrows from_gl to M,, and from X, to n2' then

the resulting model would be no more restricted than the measurement model in
Figure 4.13 and would fit the data as well as the model in Figure 4.13. In

other words, we would then have just as many free parameters to estimate in

the model of Figure 4.14 as we do in the model of Figure 4.13. By fixing

certain parameters equal to zero in the model of Figure 4.14 (95 w = 0,
172
232 =0, )&2 = 0), we have overidentified the structural parameters

associated with causal relationships among the variables 51, Xy Dl and

Nye Thus the difference in the goodness of fit between the model in Figure
4.14 and the model in Figure 4.13 is the basis for a test of the parameters
fixed to specify an overidentified causal structure among the exogenous and

latent endogenous variables of the model in Figure 4.9.

Insert Figure 4.1i4 about Here
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The structural diagram in Figure 4.15 is of an even more restricted
model in which the causal paths between the latent variables of the
previous model in Figure 4.14 have been deleted. In other words, the
structural coefficients associated with causal connections amongy the latent
variables and the manifest exogenous variable X, in Figure 4.14 have all
been fixed to zero. A comparison of the goodness of fit of this model with the
goodness of fit of the model in Figure 4.14 would be the basis for determining
whether the causal structure between the exogenous and latent endogenous

variables of the model in Figure 4.14 exists or not.

Insert Figure 4,15 about Here

Finally the diagram in Figure 4.16 is of the most restricted model of
all in this sequence. MNo structure is hypothesized to exist among the
manifest variables. This model we will call the "null model®, because it

hypothesizes that the variables are all mutually uncorrelated.

Ix:xsert Figure 4.16 about Here

Now, a sequence of statistical tests may be performed as follows:
First compare the just identified model of Figure 4,12 with the more
restricted measurement model in Figure 4.13. The test of the difference
between these two models is given by the chi square test of the goodness of
fit of the model in Figure 4.13 to the data. If one accepts the null
hypothesis (that the model in Figure 4.13 fits the data), one can then go

on to perform subsequent tests; otherwise, one must stop, since any
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subsequent model would have fixed parameters whose values were already
rejected in testing the first overidentified model.

Given acceptance of the model in Figure 4.13, one can then compare the
model in Figure 4.14 with the model in Figure 4.13. The model in Figure 4.14,

being the more restricted, becomes the null hypothesis. The chi square

statistic to use is the difference between the chi square for the

goodness of fit of the model in Figure 4.14 and the chi square for the
goodness of fit of the model in Figure 4.13. As noted earlier, the degrees
of freedam for the chi square statistic comparing these two modeis is the
difference in the degrees of freedom between the two goodness—of-fit chi
squayre statistics. If.one rejects the null hypothesis, that is, rejects
the values of the parameters fixed to specify an overidentified structure
among the latent variables, one must stop further statistical testing and
accept the model in Figure 4.13. Acceptance of the model in 4.14 suggests

confirmation of the hypothesis regarding fixed values in the structural part

of the model. That is, E, and x., are unrelated (o =0), and,
-1 =2 6%
further, neither are direct causes of Y, (¥, =0, Yy =0

On the other hand, if one accepts the null hypothesis (meaning the
model in Figure 4.14 has acceptable fit), one can then go on and test the
difference between the model in Figure 4.15 and the model in Figure 4.14,
which is equivalent to a test of whether the structural coefficients,
331' 212, and 951, representing causal connections among the manifest
exogenous and the latent variables of the model in Figure 4.14, differ
significantly from zero. As before, the chi square statistic to use for

this test is the difference chi square equal to the difference between
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the goodness~of-fit chi square statistics obtained for the models in
Figures 4.14 and 4.15, respectively. The difference chi square has degrees
cof freedamn equal to the difference between the degrees of freedam of the
two goodness-of-fit chi squares. Again, if the difference chi square test
of the difference between these models is significant, one must stop and
perform no further significance testing. In that case one accepts the
structural model in Figure 4.14.

If the difference chi square test camparing the models in Figures 4.14
and 4.15 is not significant, then one can make one final test. This is a
test of the pathways from the latent variables to the observed variables.
Do their structural parameters all simultaneously equal zero? If they do,
then there should be no structure among the observed variables. Thus one
would test the difference between the model in Figure 4.15 and the model in
Figure 4.16. (Actually there is the possibility for intermediate models
between the four independent clusters model in Figure 4.15 and the
no-structure-among-variables model in Figure 4.16: One might have a model
in which just the third common factor is eliminated, leaving variables
Yypre-+r¥)4 Mutually uncorrelated as well as uncorrelated with the
other manifest variables. A more restricted model would eliminate the
secord and third factors, leaving the last nine variables mutually
uncorrelated as well as uncorrelated with the firsc three variables, which
are assumed to have a single common factor). As before, one perfomms a chi
square test based on the difference between the goodness-of-fit chi
squares of the models in Figures 4.15 and 4.16, respectively. If one

rejects the null hypothesis (that the no-structure model in Figure 4.16

is correct), one accepts the previous model of Figure 4.15.

py w-e.—e—- O —————




The Normed Fit Index. There is one serious drawback to the use cf

the chi square goodness~of-fit statistic. Just at that point where the

sample size becames large enough so that the goodness-of-fit statistic

becames distributed with reasonable approximation to the chi square

distribution, it also has sufficient power to detect even minute '
departures of the data from the model. One will find with real-world data

that he or she rejects the fit of the model almost every time, even when

an examination of the residual matrix (s - 2_}0) reveals most elements

of this matrix are small in magnitude. On the other hand, Bentler and
Bonnett (1980) point out that if one uses this statistic with small
samples, he or she will almost always accept the fit of a model to the
data for almost any model. Consequently, one would hope to find a way of
assessing how well the model captures most of the information in the
sample covariance matrix that is independent of sample size.

Bentler and Bonnet (1980) proposed an index they call the normed fit

index. This index gives the relative decrease in lack of fit between

two nested models, one less restricted than the other. The decrease in
lack of fit in going from the more restricted to the less restricted model
is compared to a norm. This nomm is defined on a nested sequence of
increasingly less restricted models that begins with a most restricted
"null" model, is followed by the original two nested models, and ends with
a just identified model. The nomm for comparison is the decrease in lack
of fit in going from the "most restricted" model at one end of the

sequence to a just identified model (which necéssarily has no lack of fit)

at the other end of the sequence. The most restricted model at the most
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restricted end of the sequence would fix all free parameters not fixed in 4
the other models in the nested sequence. In many (but not all) instances
the most restricted model is the "null" model that predicts no relations
between any of the manifest variables. In other words, under this most
restricted "null" model, the variance-covariance matrix of the observed
variables would be hypothesized to be a diagonal matrix, with all off
diagonal elements equal to zero.

For exanple, consider the nested sequence of models in going from the

model in Figure 4.16 down to the model in Figure 4.12., The model in

Figure 4.16 is the "null" model of this sequence. Figure 4.12 displays

the just identified model. The difference in lack of fit between the null
model in Figure 4.16 and the just identified model in Figure 4.12
represents the maximum possible difference in lack of fit between any two

models in this sequence of nested models. And so, we can use this maximum

possible difference in lack of fit as a nom against which the difference
in lack of fit between any two models within the sequence can be compared.
In testing the fit of the null model, the goodness—of-fit statistic is

denoted EO and is based on a comparison of the differences between the

zero covariances of the null model and the actually observed covariances
in the sample covariance matrix S, Now, designate the most restricted
"null" model _N_lo From the pair of models in question let ﬂ1

denote the leLst—restricted model, that is, the model that has t;e

fewest fixed parameters (and yet is still overidentified). Let y_lk

denote a more restricted submodel of M in that M, has not only
the same fixed parameters of ﬂl but other fixed parameters as well,

meaning it has fewer free parameters to estimate. Then the nomed fit
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index is given by

8,y = (F ~ E)/Ey (4.27)
where F is any fit function (LS, ML, GLS) evaluated for the respective
models. (The index works with any method of estimation using a fit
function which is to be minimized conditional on the fixed parameter
values and which takes the value of zero when fit is perfect. Even the
LS fit function can be used since probabilistic inference will not be
involved in the use of the normed fit index).

Now, a special case of the index given in Eq. 4.27 would be a

comparison of the lack cf fit of a given model M to the lack of
fit of the null model ﬂo which is given by -

8. = &, - B /E (4.28)

If this index is close to unity, then the model M has captured
most of the information about relationships between th; observed variables
as given in the sample variance-covariance matrix. This index may be used
even if the goodness-of-fit test for M using the chi-square statistic
is significant, meaning a statistical -l—ack of fit. 1In other words, the
nomed fit index provides a nonstatistical assessment of the adequacy of a
model's fit to data, which may be used to determine whether, on practical
grounds, a model may be of value in describing a particular set of data.
However, a drawback of the nomed fit index is that the index takes
no account of the reduction in degrees of freedam in going from the null
model to the model whose fit is being assessed. For example, a just
identified model with zero degrees of freedom would have a nommed fit

index of unity. And a barely overidentified model with just a few degrees

of freedam relative to the degrees of freedam of the null model would
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typically have a nomed fit index of near unity. One must ask how
efficient is the increase in fit in going from the null model with many
degrees of freedom to another model with just a few degrees of freedam in
terms of the degrees of freedam lost in estimating more parameters?

Khattab and Hocevar (1982) recommend the efficiency index

€= (F - F ) /Eg(dy = 3] (4.29)

which represents the per parameter (or degree of freedam) average increase
in fit, where go are the degrees of freedam of the null model, gi_k

are the degrees—-of freedam of the model M whose fit to the data—is to

be assessed, and EO and —F-k are defined as—before.

However, the ;fficiency index in (4.29) is not useful for making
camparisons between models in general. One would like to consider how
well a model fits data in terms of the parsimony of the model. The
parsimony of a model is indicated by the ratio of the number of degrees of
freedam in the model to the number of degrees of freedam available in the
data as indicated by the degrees of freedom of the null model for that
data. When this ratio is unity then all information in the data available
for testing the null model is also available for testing the alternative
model in question. No information is wasted on estimating parameters.

For example, consider two models, ﬂl and ﬂz. Let ﬂl be a

model applied to 10 variables, while ﬂz is applied to 30 variables,

The number of degrees of freedam <_301 in the null model for the 10
variable case is (10 x 11)/2 - 10 = 45. The number of degrees of freedom

902 for the null model of the case with 30 variables is (30 x 31)/2 -

30 = 435. Suppose the degrees of freedom g_l of the' 10 variable model

ﬂl is 35. Suppose the degrees of freedom d, of *he model M,
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typically have a nomed fit index of near unity. One must ask how
efficient is the increase in fit in going from the null model with many
degrees of freedam to another model with just a few degrees of freedam in
terms of the degrees of freedom lost in estimating more parameters?
Khattab and Hocevar (1982) recommend the efficiency index

E= (Fy - EJ/IEy( - Y] (4.29)
which represents th; per parameter (or degree of freedam) average increase

in fit, where d, are the degrees of freedam of the null model, d,

are the degrees of freedam of the model ﬂk whose fit to the data is to

be assessed, and —F-O and E-k are defined as before.

However, the ;fficie;cy index in (4.29) is not useful for making
canparisons between models in general. One would like to consider how
well a model fits data in terms of the parsimony of the model. The
parsimony of a model is indicated by the ratio of the number of degrees of
freedam in the model to the number of degrees of freedam available in the
data as indicated by the degrees of freedom of the null model for that
data. When this ratio is unity then all information in the data available
for testing the null model is also available for testing the alternative
model in question. No information is wasted on estimating parameters.

For example, consider two models, M

and -M Let M, be a

2° 1

is applied to 30 variables.

1
model applied to 10 variables, while gz

The number of degrees of freedam 901 in the null model for the 10

———

variable case is {10 x 11)/2 - 10 = 45, The number of degrees of freedam

d.. for the null model of the case with 30 variables is (30 x 31)/2 -

=02
30 = 435. Suppose the degrees of freedom gl of the. 10 variable model

h_'ll is 35. Suppose the degrees of freedom d, of the model M,
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is 425. Both models differ from their respective null models by 10

degrees of freedam. Yet Lﬂ_z would have a parsimony of 425/435 = .977

while the parsimony of M, would be 25/35 = .71. If M, and M,
both had the same value for the normed fit index, they would both have the

same efficiency index as well, but, because ﬂz is more parsimonious, its

use of the data is superior. Thus, we recamn;rxi multiplying the normed fit
index by the parsimony of the model to obtain the parsimonious fit index:
T = (9/4) (Ey = F)/Ey] (4.30)

This index corrects for the high nomed fit index values obtained by
models that waste data in estimating parameters to get good fits to the
data. Note that a just identified model with zero degrees of freedam
would obtain a zero parsimonious fit index value even when its normed fit
index value is unity.

We will now illustrate the use of the normed fit indices as well as

estimation, significance testing, and nested models in an example of a

structural model with latent variables.

Example. What follows is a series of analyses based on an
artificially generated sample variance-covariance matrix. This matrix was
designed to simulate data obtained from a sample of 800 observations on 13
manifest variables having the structural relationships of the model in
Figures 4.9 and 4.14. This sample variance-~covariance matrix is shown in
Table 4.3.

our first task will be to evaluate the "measurement model" part of the
model in Figure 4.9 and Figure 4.14. In this phase of our analysis we will

attempt to answer questions such as the following: Have we selected

Insert Table 4.3 about here
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variables that behave as indicators of latent variables in the manner that
the manifest variables of the model in Figure 4.9 and Figure 4.14 do? 1In
other words, are manifest variables Y3r eeer Yg all related to a
single camnmon latent variable or factor? Can we say the same thing about |
variables y,, ..., Y19 ©OF variables y, s «ees ¥),7 IS
variable 53 uncorrelated with variables y,,,...,y;,? These
questions can be answered by testing the model shown in Figure 4.13. To do
this we will now seek maximum—likelihood estimates of the parameters of

the model in Figure 4.13.6

Insert Footnote 6 about Here

The maximum likelihood estimates along with the estimated standard
errors of the free parameters of the model in Figure 4.13 are shown in the
structural diagram in Figure 4.17. The chi square test for goodness of fit

with 61 degrees of freedan yields a value of 57.4074. The probability of

getting a chi square statistic this large or larger with 61 degrees of ,
freedan is .6069. Hence the goodness-of-fit statistic is not significant

at the .05 level, and we can accept the model as consistent with the data.

Insert Figure 4.17 about Here

Having accepted a model in which the variables are divided into
homogeneous clusters in the expected manner, we now can focus on the
structure among the latent variables of that model. We will assume

that according to theory the latent variables of the model in Figure
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4,17 have a structure like that of Figure 4.9 or Figure 4.14. 1In
specifying this model we will have to fix the values of the two structural
parameters relating the disturbance variables §l and 52 to their
correspornding latent endogenous variables Z_]l and 92 just so the metric
of these endogenous variables will be determined. 1In Figure 4.18 we show
the structural diagram of this model again, but this time with
max imun—likelihood estimates and estimated standard errors of the values of
the structural parameters of this model. The chi square statistic for this
model has 64 degrees of freedam and a value of 57.6570. The probability of
getting a chi square with 64 degrees of freedam this large or larger is
.6988. Again the ch square statistic is not significant at the .05 level,
and so we continue to accept the model. The difference chi square for the
camparison of the models in Figures 4.13 and 4.14 is 57.6570 - 57.4074 =

.2496 with 64 - 61 = 3 degrees of freedam. This is not significant. Hence

the specification of the causal structure among the exogenous and latent

endogenous variables is consistent with the data.

Insert Figure 4.18 about Here

Because the chi square goodness~of-fit statistic is not significant,
we may now test hypotheses about various free parameters of the model
in Figure 4.18. One way we could do this at this point is to perfomm
confidence interval tests of whether the various free parameters of this
model are equal to zero or not. For example, we may wish to test the
hypothesis that the structural parameter 921 relating the first latent

endogenous variable to the second latent endogenous variable is equal to zero,
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The max imun~likelihood estimate of 3,21 is equal to .729 and has a standard
error of .054. An approximate 95% confidence interval estimate of 921 is
thus [.729 -~ 2(.054) < 9621 < .729 + 2(.054)] or [.611 <_0b21 < .837].
Since the interval does not include zero, we reject the hypothesis that
Qzl is equal to zero (cf. J8reskog & S8rbom, 1979). In Figure 4.18
the standard errors of each of the free structural parameters of the model
are indicated in parentheses next to the corresponding maximum likelihood
estimates of these parameters. A test of this form could be performed for
each free parameter in turn. However, the tests in such a sequence of
tests will not be independent and will have an unknown bias after the first
test,

Instead of performing at this point a series of confidence interval
tests of the free parameters, we may also proceed with the remainder of the
a priori sequence of tests described earlier. The remaining tests will
test hypotheses about select free parameters of the model in Figure 4.14
and 4.18 using difference-chi-square statistics. To begin with consider
the model in Figure 4.15. This is a model nested within the previous model
in Figure 4.14 in which the structural parameters pertaining to the
relationships between the two exogenous and the two latent endogenous
variables (i.e., le' }’12, Q’zzl) have all been fixed to zero. All
other fixed parameters are the same. For the model in Figure 4.15, the chi
square goodness~of-fit statistic with 67 degrees of freedom is equal to
1120.5375, which is significant at the .05 level. The difference chi
square between this model (Figure 4.15) and the previous model (Figure 4.14
or 4.18) is 1061,8805 = 1120.537% = 57.675, with 3 = 67 ~ 64 degrees of

freedam, which is significant at the .05 level. This means that fixing to
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zero the 3 additional parameters pertaining to causal relationships among
the two exogenous and the two latent endogenous variables produces a
definite lack of fit of the model to the data. Hence there must be nonzero
relationships between these variables as specified by the causal
connections hypothesized between them.

Because the chi square statistic for goodness of fit of the model
in Figure 4.15 is significant, we cannot proceed with any further
statistical tests for the fit of further restricted models nested within
the previous models. They would all be rejected. We thus end up accepting
the structural equation model repeated in Figures 4.9, 4.14 and 4.18 as
adequately fitting the thirteen variables.

However, we méy further wish to apply the normed-fit index to the
model in Figure 4.18. To obtain this value we first must obtain the value
of the chi square goodness-of-fit statistic for a "null” model that
proposes that the covariances between different variables of the set of 13
manifest variables are all zero. In other words, the hypothetical model
variance-covariance matrix _2:,0 is presumed to be a diagonal matrix with
zeros in its off-diagonal positions. This would correspond to the model
illustrated in the structural diagram in Figure 4.16. In this case the
value of the chi square goodness-of-fit statistic with 78 degrees of
freedam is camputed to be 5029.1802, which is significant at the .05 level.
But the nomed fit index for the model in Figure 4.18 is

(5029.1802 - 57.675)/5029.1802 = ,9885
with an associated reduction in degrees of freedam in going from the null

model to the structural equation model of

(78 - 64) = l14.
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The efficiency index for the model in Figure 4.18 is ,9885/14 = ,0706.
The parsimonious fit index is (64/78) x .9885 = .8l1. These results mean
we have gained considerable improvement in fit at the expense of very
little loss in degrees of freedam in going from the null model to the
structural equation model to account for the relationships among the 13
manifest variables. This provides considerable support for the model in

Figures 4.9, 4.14, ard 4.18.

Applications.

A number of latent variable models are available in addition to the
recursive model we used to illustrate latent variable designs. References

to a large number of studies are furnished in the Annual Review chapter

on "Miltivariate Analysis with Latent Variables: Causal Modeling," by
Bentler (1980). (ne can also find overviews of a number of important
designs in J8reskog (1978) and more canplete illustrations in J8reskog

and S8rbam (1979). Of special interest are models that can be used to
test assumptions associated with selected conditions for confirmatory
analysis, using latent variaL:Jle designs. For example, an overview of
latent variable models for testing reciprocal causation (Condition 4) was
presented recently by Maruyama and McGarvey (1980). [Unfortunately, these
authors made the unwarrented assumption that disturbances for reciprocally
related, latent endogenous variables were unrelated.] Tests for moderators,
which help to specify boundaries for theory (Condition 6), have been
addressed by Werts, Rock, Linn, and J8reskog (1976), Werts, Rock, and
Grandy (1979, and Werts, Rock, and Linn (1979). The question of stability

of structural models (Condition 7) has been investigated in growth and
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longitudinal studies (J8reskog, 1979; S8rbom, 1979; Werts, J8reskog,

& Linn, 1972). Finally, questions concerning the operationalization of
] variables and constructs (Condition 8), such as method variance and other

forms of nonrandom measurement error, have received considerable attention

in the latent variable literature (cf. Alwin & Jackson, 1980; Kalleberg &

Kleugel, 1975; Mulaik, 1975; Mellenbergh, Keldemman, Stijlen & Zondag,

o vr——

1979; Werts, J8reskog & Linn, 1976; Werts, Breland, Grandy, & Rock, 1980).

The Conditions for Causal Modeling with Latent Variable Models

By now it should be clear that to do confirmatory analysis with latent

TR TR T T Y mwew T T

variable structural models one still has to satisfy the ten conditions for
confirmatory analysis described earlier (Section 2) for models with

i manifest variables. So far,' our discussion of latent variable models has
focused on methodological procedures for determining whether structural

parameters associated with hypothesized causal connections between

var iables are indeed not equal to zero (Condition 9) and whether the

, specifications of fixed parameters in the identification of the model are
consistent with the data (Condition 10). We also furnished references
regarding models and tests for causal direction (Condition 4), moderators
{Condition 6), stability and stationarity (Condition 7), and construct

i validity (Condition 8). This might suggest that researchers using latent
var iable models have addressed conditions for confirmatory analysis in a

; meaningful and thorough manner. However, such has not always been the
case. It is our impression that many of the conditions have been violated,

often seriously, in published confirmatory analysis using latent variables.

b T

We shall review below our more serious concerns.
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Violations of Conditions 1, 2, and 5. We have observed numerous

studies with violations of the self-containment condition (Condition 5),
where obvious relevant causal variables have been omitted fram latent
variable structural models. These omissions of relevant causes have seeaned
not to be due to a dearth of knowledge or theory available to
investigators in the field, but due to a superficial regard for theory and
available knowledge (violations of Conditions 1 and 2) accampanying the
rush to implement a new methodology. In fact, violations of Conditions 1
and 2 may be the root of most misuses of confirmatory methods with latent
variables, and for us this is evidenced by the many studies in the
literature in which little or no effort has been made to provide
theoretical justification for the model to be analyzed. It is time that
theoretical concerns receive at least equal emphasis as methodological
concerns in latent variable analysis.

Misinterpretations of disturbance variables (disturbance temms).

Another common mistake is to short-circuit the distinction between
disturbance variables and residual variables. Disturbance variables are
not "residual variables", that is, variables representing variation in the
endogenous variables after effects due to preceding causal variables in
functional equations have been partialled o.t in the estimation process.

In this case residual variables are always uncorrelated with causal
variables in structural equations because of the mathematics of
partialling. As with manifest variable models, the correct way to view
disturbance variables is to regard them as causal effects on the endogenous
variables due to such things as omitted relevant causal variables, random

shocks, and misspecifications of equations (e.g. nonlinearity).
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The extraneous causal influences acting on an endogenous variable may
or may not be correlated with the causal variables included explicitly in
the functional equation for an endogenous variable. If in a functional
equation the disturbance variable is correlated with the causal variables
(for example, the disturbance includes relevant causes), then the
functional equation and the system of functional equations will not be
self-contained (i.e. a violation of Condition 5), and it will be
impossible to determine in a consistent way the effects of the causal
variables on the endogenous variables. Thus, we must have good reasons to
assume that the disturbance variables are uncorrelated with the causal
variables in functional equations. In other words, we must know of no
plausible unmeasured extraneous variable that acts upon an endogenous
variable and at the same time correlates with the causal variables of the
endogenous variable, If this is the case, then in the estimation process
residual variables can be tentatively identified with disturbance
variables.

In a related vein, another frequent mistake with latent variable
models is to presume without prior justification that the disturbance
variables contain only error of measurement. Often the variances of the
disturbance terms are interpreted as "error variances" and used to estimate
the reliability of certain manifest variables. (In general these should be
biased estimates at best). But as we have already indicated, the
disturbances may contain true variance that is associated with omitted
causal variables not included in the study. Another misinterpretation is
to assume that the disturbance variables are like unidue factors in cammon

factor analysis, which are always mutually uncorrelated. But it is quite
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possible to have correlated disturbance variables because omitted, relevant

causal variables represented in different disturbances can be correlated.

Most estimation algorithms allow one to estimate these correlations, but -
such estimation is meaningful only in certain types of designs, such as
nonrecursive and time-series models.

In summary, disturbance variables are often misunderstood and
misinterpreted in latent variable models. Tob a great extent this
appears to be again attributable to the lack of attention to Conditions
1, 2, and 5.

Exploratory rather than confirmatory analysis. A serious

misuse of the methodology of confimmatory analysis with latent variables is
to "play" with fixing and freeing the elements of the parameter matrices.
That is, a researcher mdy cCuidiuct numerous analyses with different

fixed and free parameters until a model is found that best fits the data.

It is also not wmknown for some researchers to change assumptions
regarding causal direction for the same purpose. This is nothing but
exploratory analysis and does not represent a confirmatory analysis.
Stated simply a confirmatory analysis tests only a priori models

which have a strong theoretical base. This does not preclude, however,
testing several a priori models on the same sample.

Failure to overidentify parameters. Another serious shortcoming of
L]
many confirmatory analyses using both manifest and latent varjdbles is to

fail to overidentify the structural parameters of the measurement portion
of a model concerning the connection between latent variabl®s and their

manifest indicators. As mentioned earlier in this section,

( d
overidentification is essential if one is to specify a model in ways in

-
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which it can be potentially falsified., As it most often happens, failure
to overidentify parameters occurs when a researcher selects only three
manifest indicators to represent a latent variable, While it is true that
the structural coefficients relating three manifest indicators to a latent
variable are identified, in most cases they are not overidentified in
models containing these indicators. As a result it is not possible to test
whether or not the three indicators have a single latent variable in
cammon, since one can always fit a single latent variable perfectly to
three manifest variables. Thus, a crucial test of the "measurement inodel"
part of a structural model with latent variables may not be possible.
Therefore, we recammend that each latent variable in a model be represented
by at least four manifest indicator variables. 1In this case the structural
parameters of the "measurement" submodels relating each set of manifest
indicators to their respective latent variables will be overidentified, and
it will be possible to test the measurement aspects of the model.

These are our most serious concerns with respect to the use of latent
variables in confirmatory analysis. They are by no means exhaustive of all
the concerns in this area. 1In fact, many of the issues we raised in regard
to manifest variable models, such as the need for equilibriumtype
conditions and specification of causal intervals in time-series analysis,
apply equally to latent variable models. We will not attempt to document
all of these issues again for latent variable models. Rather, we suggest
that the users of the latent variable approach have been at least as
cavalier as users of the manifest variable approach in regard to
theoretical justifications for using confirmatory analysis. We recammend

strongly that theoretical issues be given greater attention in latent

it




variable designs.

Causal Inference with Latent Variables

There are dangers and difficulties for causal inference in using the
latent variable concept, because it impl ies explanation in terms of unseen,
not directly measureable processes and/or entities. The danger is that

when a model with latent variables appears consistent with data, one may

fail to entertain the possibility of alternative models for the same
data. Latent variables can never be regarded as representing unique
explanations of any phenomenon. This is especially to be remembered in
latent variable models because the number of latent variables, including
latent disturbances, will always exceed the number of manifest variables.
As a consequence, the latent variables can never be uniquely determined

from the manifest variables; what is manifest and seen cannot uniquely

define what is latent and unseen. This result is now well known for the
latent variable model of exploratory cammon factor analysis (cf. Milaik
& McDonald, 1978; McDonald & Milaik, 1979 for reviews of this problem

in factor analysis). But the result also generalizes from caommon factor
models to structural equation models with latent variables.

There are two important aspects to the problem of indeterminacy for
latent variables: (1) scores on latent variables are not uniquely defined.
(2) the identity of latent variables is not uniquely determined from the
manifest variables dependent on them.

When a structural equation model with latent variables fits a set of

data, one may naturally want to have a way to obtain measurements on the

latent variables, Borrowing the factor score concept from factor analysis,
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some have tried to obtain these measurements by regressing the latent
variables onto the manifest variables, using infommation about the
covariances among the manifest variables, and between the manifest
variables and the latent variables, as the basis for the regression
estimates. However, the regression estimates of the latent variables are
not equivalent to the latent variables, differing from them by an
indeterminate amount whose variance is equal to the error of estimate in
estimating the latent variable from the manifest variables., It is the
unpredictable part of the latent variable that is indeterminate., There is
no unique solution for this part. Hence, one can construct more than one
solution for the latent variable by combining the predictable part—
obtained from the regression of the latent variable onto the manifest
variables-—with a variable independent of the predictable part, chosen
arbitrarily to stand for the unpredictable part. When the squared multiple
correlation for predicting a latent variable is less than .70, then quite
possibly two alternative constructed solutions for the same latent variable
can be correlated not just zero but negatively with one another. The use
of constructed or estimated "factor scores" to stand for a latent variable
in question is not recommended when the multiple correlation for predicting
a latent variable is less than .80. When the multiple correlation is less
than .80, such scores may show moderate to strong correlations with other
variables while possibly the real latent variable in question has only zero
to moderate correlations with these same other variables.

More problematic is the indeterminacy in the identity of latent

variables in structural equation models. To be sure, a researcher perfomms

a confimatory analysis with an interpretation already given to the latent
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variables of the analysis. If the model is disconfirmed because the latent
variables do not relate to their respective manifest indicators as expected
by hypothesis, then one may question either the choice of indicators, or
more seriously, the interpretations attached to the latent variables of the
model that led one to believe that the manifest variables would be linked
together through the latent variables,

But what can one conclude if the model is corroborated by showing
acceptable fit to the manifest variables? Is the model corroborated
because the manifest variables have as causes the latent variables presumed
at the outset to be causes of them? Or is the model corroborated because
the manifest variables have some other variables as causes? In particular,
could there be other variables having the same pattern of relationships
with the manifest variables as one's hypothetical latent variables, but
distinct from them? The mathematics of indeterminacy for latent variables
allows for this. But there is no way to resolve such questions other than
to try to make explicit all possible alternative interpretations for the
results and then perform further studies to differentiate between the
interpretations. But the indeterminacy of latent variables is not a fatal
flaw of latent variable models. It is a reflection of the indeterminacy in
all inductive attempts to use empirical observations to confirm theories by
examining whether consequences deduced from the theories do indeed occur as
expected. This point we emphasized earlier in Section 3.

We recognize that there are those who are uncomfortable with unseen
causes, latent variables, and hypothetical constructs. In fact, inspired
by the 19th century writings of the empiricist philosophers Mach and

Pearson, the followers of the positivist movement in the philosophy of
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science sought between 1920 and 1950 to exclude from science all reference
to unseen causes, believing that incorrigible knowledge could only be
derived from sensory experience and hence from those things that were
observed. Since the 1950's the philosophy of science has taken a more
pragmatic and less dogmatic and absolutistic position with respect to
knowledge. The result is that the use of "unseen causes" is accepted now
with greater tolerance, as long as the unseen causes allow one to unify
broader damains of experience than before and are interpreted in temms of
categories that in principle may eventually be observable or predict novel,
observable results. It is interesting to note that Mach rejected totally
atomic theory in physics because atoms were "too hypothetical”, while
Pearson opposed the Mendelian theory of genes for nearly 20 years after
Mendel's work was discovered in 1900, partly because genes were not
observable. 1In a way these scientists' rejection of what were at the time
hypothetical constructs led them to reject what were to become the next
major developments in their respective fields. Thus to "see" things
differently, and this includes in some cases "seeing” in things what is not
directly visible in them, may be essential first steps to achieving better

understanding of the relationships between things in our world.
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1’I‘heor:ies of stress often differentiate between (a) qualitative
overload, which refers to demands that exceed physical and/o. personnel
resources, and (b) quantitative overload, which refers to demands that exceed
available time limits but not physical/personnel resources (cf. Katz &

Kahn, 1978). Both sources of overload are addressed in the illustration.

2'H'le conditional function has the form of the linear regression

function (Lord & Novick, 1968, Other functions, such as maximum likelihood
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functions, may be employed to represent functional relations (cf. J8reskog &

) Sorbom, 1979).

3Methodology has also been developed for nominal and ordinal scales of
measurement (cf. Carter, 1971; Boyle, 1970; Heise, 1972; Lyons, 1977; Spaeth,

1975).

4'I‘he latter assumption satisfies the "rank condition” required for
identification, which is beyond the mathematical scope of this treatment. It
implies that estimates of structural parameters will not be subject to at
least severe bias resulting from multicollinearity (cf. Billings & Wroten,

1978; Johnston, 1972).

5l?'oint;s 1 throwgh 3 are analogous to conventional contrasts between
standardized and unstandardized regression weights, which are not elaborated

here. Decomposition of correlations is treated in Condition 10.

6In actuality the sample variance-covariance matrix in Table 4.3 was

created in the following way: First 800 observations on the 15 mutual
uncorrelated independent variables of thé model in Figures 4.9 and 4.14 were
generated using a computer random number generator that produces numbers that
are approximately normally distributed with means of zero and standard
deviations of unity. The sample variance—covariance matrix for these 15
aritifically generated variables was then calculated and used as a sample

' estimate 2 of the matrix of covariances among the independent variables of the
model in Figure 4.14. Then after fixing the zero and other fixed elements of
the mattices&,‘{, andé to specify the model in Figure 4.14, arbitrary values

were then chosen for the remaining "free" parameters of these matrices and the

3 ek et bt M —— .
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resulting sample variance-covariance matrix was derived using equations 4.9a -
4.9c. Thus the matrix in Table 4.3. simulates a sample variance-covariance
matrix taken from a population distributed according to the multivariate

normal distribution consistent with the model in Figure 4.14.

7’1‘he estimates of the free parameters of the models discussed in this

section were obtained using the program LISREL IV (J8reskog & Sorbom, 1978). H
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vValues on X: 1,1,2,2,3,3,4,4,5,5,6,6

values on ¥: 1,1,2,2,1,1,3,3,1,1,3,3

? Frequency Y
4 ' 3 . ’
é 2 2 D
k 6 !
I 2 3 4 5 6 X
1
Frequency 2 2 2 2 2 2

Figure 1.1. The Functional Relation of Variable Y

on Variable X in an Asymmetric, Self-

Contained System.
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1
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H’,
y. Police
Violence
Sy \*2 ﬁ
X
B B
YaY¥4 YqYa
X3 By
2“'3
Y Protestor
Violence
°y 7_* &
d
Xs Y2

Nonrecursive structural model relating police
violence and protestor violence. (From "An
Introduction to the Logic, Assumptions, and Basic
Analytic Procedures of Two-Stage Least Squares' by
L.R. James and B.K. Singh, Psychological Bulletin,

1978, 85, 1104-1122. Copyright 1978 by the American
PsychoTogical Association. Reprinted by permission.)
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(Expected Quality of
Role Performance)

Xy
8 ‘;
), ‘
\
Y (Role —d =RS
1 ‘Overload) y1( )
+
/
X2

(Expected Quantity of
Role Performance)

(a) Self—Contained

X4
&
"
\

1 <———dy (Rs+a E’npersonalitﬂ)

Y
1
i/
X\ «—

(b) Nonself — Contained

Figure 2.4. Illustrations of self-contained and nonself-contained
structural models.
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ORGANIZATIONAL - DYSFUNCTIONAL
CONTROL , BEHAVIORS

EMPLOYEE
DISSATISFACTION

Figure 2.5a2. Social system: Nonbounded time interval

ORGANIZATIONAL EMPLOYEE DYSFUNCTIONAL EQUILBRIUM—TYPE
—> —
CONTROL DISSATISFACTION BEHAVIORS CONDITION
-,
r Y

Figure 2.5b. Causal order assuming rapid equilibration times
s and an equilibrium-type condition

Figure 2.5. Causal order and the equilibrium-type condition.
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Figure 2.6

Cenditions Pertaining to Appropriateness of Theoretical

E Models for Confirmatory Analysis

i Condition 1: Formal statement of theory in terms of a structural model.

; Development of a structural model that specifies variables,
' causal connections among variables, and functional relations
; and equations that relate each effect to all of its

relevant causes.

Condition 2: Theoretical rationale for causal hypotheses.

| Use of theory to propose how causes produce effects by

: introduction of mediating mechanisms to help to explain

4 nonobvious covariation among variables and molar causal
connections among complex variables.

Condition 3: Specification of causal order.

Hypothesized order in which variables occur naturally
in a system of ordered functional equations, given an
equilibrium-type condition for cross-sectional designs
and specified causal intervals, stationarity, and an
equilibrium-type condition for time series designs.

Condition 4: Specification of causal direction.

Hypothesized direction of causation for each causal
connnection in a structural model. The direction may
be asymmetric, denoting a recursive causal relation, or
reciprocal, denoting a nonrecursive causal relation.

Condition 5: Self-contained functional equations.

The functional equation for each effect (endogenous
variable) in a structural model contains all the relevant
causes of that effect, which is indicated by lack of
covariation between the explicitly measured causes in

an equation and the disturbance term of that equation.

Condition 6: Specification of boundaries.

Given linearity in parameters and variables, the
functional equations are additive within the populations
(e.g., subjects and environments) to which inferences are
to be made.

Condition 7: Stability of structural model.

The values of structural parameters are invariant
(stationary) over specified time intervals, and the values
on variables representing events are in an equilibrium-

! type condition.

E
E




Functional Equations

Xy = Blel + d2 (2.7a)
Xy = Blel + B32x2 + d3 (2.7b)
Xy, = B“_x1 + thxz + B43x3 + dh (2.7¢)
L]
v
Figure 2.7. Structural model and functional equations for a

fully recursive design.

F
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l///dz
X, ;
100.0
&0 ¢ @7 %) d
K/// )
. (3.12) X,
1 s
(4.0) s N (36.0)
(3.09) = e’
Xa
(25.0) T~ d,
.8a Variances and covariances among variables
X, = B21x1 + e, (2.8a)
Xq = B31x1 + B32x2 + e, (2.8b)
X, = B41xl + B&ZXZ + B43x3 + e, (2.8c)

.8b OLS regression equations

X, equation: B21 = 2.00

-~

Xq equation: ﬁ31 .75, B32 = .25

~

X, equation: B41 = .60, B[‘2 = .18, 843 = .48

2.8c Estimates of unstandardized regression weights

Figure 2.8 An empirical example of structural equation analysis for
a recursive model.
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/U2
z2
P42
Y o
o
o
P41 r'd
» 24
P
37 Q B2
Z3
‘K\\~u3
Path Equations
z2y = Py12y T Uy (2.9a)
Zy = P31Zy T P32y * Uy (2.9b)
Z, = Py1%1 + pyo2, P4323 + u, (2.9¢)
Figure 2.9. A fully recursive path model and

corresponding path equations.
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Uy a+RS

21 2 g
D
X3 P32
]
23
Us
9
(A) Self-Contained Path Model (B) Path Model with an

Unmeasured Variable

Bl

| Figure 2.10. Illustrations of a self-contained path model and
! a path model with an unmeasured variable
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Equations for Figure 2.10a - Self-Contained Path Model

Path Equations

Expectations

Normal Equations

Z, = P12 + (d2=RS)

P3121 * P332%;

+ (d3=RS)

E(zy2,) = p21E(z1z1) + E(RSzq)

E(zy2;) = p31E(zlzl) + pqyyE(2,2,) + E(RSzy)
= p31E(zlzz) + pyyE(2,2,) + E(RSz,)
Note: E(RSzl) = E(RSzl) = E(RSzz) =0

T3y = Py + P32T91 (2.11b)
(2.11¢c)

32 T P31721 t Py

Equations for Figure 2.10b - Path Model with an Unmeasured Variable

Path Equations

Expectations

Normal Equations

P12 + (RS + a)
+ (RS + a)

P3121 * P33%;

= p21E(zlzl) + E(RS + a)z1

= p31E(zlzl) + p32E(2221) + E(RS + a)z,
= p31E(zlzz) + p32E(2222) + E(RS + a)z2

(2.114d)

+ 0 E(RS+a)z1 =g

al’ al

Ty; = P3p * P3pTy1 Y 9y (2.11e)

T3y = P31Tp) * P3p + 9, (2.11f)

Figure 2.11. Path equations, expectations, and normal equations for
Figures 2.10a and 2.10b.




False Model True Model

Assumes uy, = RS when in fact Assumes a is measured, and
u, = RS + a thus u, is equal to RS

Path Equations

V4 7/
29 = Pp1%1 Yy 2y = Pp1%1 T P2 t Y
Expectations !
/ ’ i
E(zzzl) = pZIE(zlzl) + E(uzzl) E(2221)-pZIE(zlzl)+p2aE(azl)+E(uzzl) :
Vd /
E(zza)=p21E(zla)+p2aE(aa)+E(uza)
Normal Equations
_ N
T21 = P21 T21 T P21 T P2afal
. _ ¢
Note: False assumption that Ty, = Pp1Ta1 t Poa

E(uzzl) = E(RS + a)z |

= 9a1 T 0

Bias in Using r,, as Solution for Po1

T Po1 (false model)

p;l + pgaral (true model),

thus, pjyy (false model) differs from pgl (true model)
by a factor of:

4
Pratal (2.12a)

Figure 2.12. Biased solution of path coefficient




Z

1% / u_2(=Rs)
(.50) Z3
a/K.GEﬂ’/’

’
Path Equation: 2z, = p;lzl + péa + uy (=RS)

/
Solutions for Path Coefficients: pgl = .50, py, = .40

2.13a. Solutions for path coefficients in a self-contained path equation
(true model). Asterisks indicate correlations.

u =
2, (.70)* 22/ 2( RS+a)

Path Equation: Zy = Pp121 + u, (=RS+a)
Solution for Path Coefficient: Pp; = Ty1 = .70

2.13b. Solution for path coefficient in nonself-contained path equation
(false model).

7/ + 7/
P21 T Pa1 T PoaTal

.70 .50 + (.40)(.50)

.50 + .20

. . ’
Bias in Py; = PoaTal = .20

2.13¢c. Bias in estimate of 1% (false model) .

Figure 2.13. Empirical illustration of bias resulting from an unmeasured
relevant cause and a nonself-contained path model.




Step I. Attempt to identify known major and moderate causes Of the endogenous
variable.

A. 1If data have not been collected, then attempt to measure the major/
moderate causes unless there appesrs to be a good reason not to
include one or more of these variables, as determined in Step II.

B. 1If data have already been collected, then attempt to identify
known major/moderate unmeasured causes. If one or more such

causes is believed to exist, proceed to Step I1I. 1f no major/moderate
unmeasured causes are believed to exist, then exit from the decision
steps at this point [i.e., 8 serious unmeasured variables problem
agpears to be unlikely for this endogenous variable, at least from

the perspective of the decision-maker(s)].

Step 11. Postulate whether each (major/moderate) unmeasured cause is correlated
wztE one or more of the measured causes, using prior empirical evidence whenever
possible to support the postulates. In designing a path analysis study, this
step and those to follow are meant to be viewed in terms of causes that are not
as yet in the causal model, as compared to causes already included in the model.

A, If the correlations between an unmeasured cause and all of the measured
causes are presumed to be low (e.g., 0 to ¢ .20, although this is
arbitrary), then exit here for that unmeasured cause. Note, however,
that if a different unmeasured cause is included later in the causal
model, then the decisions regarding prior unmeasured causes should be
reevaluated (this applies to all of the following steps). Furthermore,
an exit at-this point suggests that the explanatory power of the

causal model in regard to the endogenous variable of interest will

be reduced. On the other hand, if the judgment is correct that all
correlations between the unmeasured cause and the measured causes

are low, then the solutions of the path coefficients for the measured
causes are not likely to be seriously biased.

B. If an unmeasured cause is believed to have a moderate to high

correlation with one or more of the measured causes, then consider

whether the unmeasured cause is essentially linearly dependent on

some combination of the measured causes. If prior research and/or

judgment allow one to have confidence in an affirmative response to

one of these considerations, then exit at this point. Note again, !
however, that while the exit suggests lack of serious bias, this will )
occur only if the judgments are correct.

Step III. By reaching Step III, it has been decided that (a) at least one

unmeasured major/moderate cause exists for the endogenous variable of interest, ;
(b) the unmeasured cause is correlated at least moderately with one or more of the
measured causes, and (c) the unmeasured cause is not linearly dependent on some
combination of the measured causes. This suggests that a serious unmeasured variables
problem exists and that an attempt to solve for the path coefficients for this
endogenous variable based on the measured causes is likely to result in at least

one seriously biased solution. Consequently, it is recommended that path analytic
procedures not be employed for this endogenous variable until the unmeasured

cause(s) is in fact measured. A less desirable possibility might be to delete
measured causes that are presumed to be correlated with unmeasured causes.

Figure 2.14. Decision steps for assessing the seriousness of unmeasured variables problem.
(From "The Unmeasured Variables Problem in Path Analysis'" by Lawrence R. James

Journal of Applied Psychology, 1980, 65, 415,421. Copyright 1980 by the
American FachoIogIcaf xssoc¥ation. Reprinted by permission.)




233
]

/ e

e p p
“1 (?r"'t'é'rlgé'ttsy) of A > %2 (Attraction) 32 » 23 (Friendship)

Path Egquations

2.15a. zy is an indirect cause of z,

T e

C p
Z1 ?.','&'r':;i‘s" of 21 » Z5 Attraction
5 O U2
O’

5 v

z3 Friendship

| AN

us

Path Equations

22=921 zq +us (2.}5C)
z3= P3q 29 + P3222 + Y3 (2.15d)

2.15b. zq is a relevant cause of Zy

Figure 2.15. Contrasting path models with zq treated as an

indirect cause and a relevant cause
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Figure 2.16.

D
Fb] &)

Path Equations

= P12 t Uy
= P31%) t P3p2) toujy

= Py1%1 t PyZy t Puazy t oy

A just identified path model
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(2.15a)

(2.16b)

(2.162)




T e oy

P2\ Fzz
4(//U4
P
Z, 32 Z,
ps, l ?A3
Z3

us

Figure 2.17a. Path model with p4] predicted to be equal to zero.
2y = P12ty
23 T P31%1 t P3pZ) t Uy

z, = (p41=0)zl + Pyp2, + P, 323 + U, = PyoZy + Py323 + U,

Figure 2.17b. Path equations.
T21 T Py
T31 = P3Py t Pgp
T32 = P3p * P3Py
T41% = P43P3gPay * Pu3Pyy t PPy * Bg
42" = P43P3p * Py3P3iPoy t Py ¥ RurPrT
= Py3 t PyP32 t PyoP31Po1 t BuaParPri t RutPii

Decomposition equations; asterisks denote correlations
subject to overidentifying restriction.

*
43

Figure 2.17c.

(2.17a)

(2.17b)

(2.17¢)
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Figure 2.18. An overidentified recursive path model with
P3) and P41 predicted to be equal to zero
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FALSE MODEL

Path Equations

29 = Pp121 t Wy

*
(p31=0)z1 + P392) + ug

zq =
Predictions
§21 and §32 are significant
ﬁ;l is not significant
TRUE MODEL
-
Z1 —> 22 > Z3
\ \

Path Equations

zy =Py tyy

*
z3 = (P31=0)2) + P32y + Py,2, + Uy

Predictions

521, 532, and §3a are significant

“k
P31 is not significant

Figure 3.1. Confirmation of a false model.
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Table 4.2, Symbols used and their meanings in notation for structural
equation models.

Symbol Meaning

Latent exogenous variable

Ny

n Latent endogenous variable |
€ Latent disturbance variable.

X Manifest exogenous variable,

y Manifest endogenous variable.

a Structural parameter relating one endogenous

! variable to ancther.

Y Structural parameter relating an exogenous
variable to an endogenous variable.

8 Structural parameter relating a disturbance
variable to an endogenous variable.

5 Random vector of latent exogenous variables.
X Random vector of manifest exogenous variables.
£ Random vector of disturbance variables.
n Random vector of latent endogenous variables.
¥ Random vector of manifest endogenous variables.
i £ * Random vector of independent variables.
= £* = g x', ¢l
, n * Random vector of dependent variables.

1*' = [D.' Z']‘




Table 4.2 (Continued). Symbols used and their meaning in
notation for structural equation models.

Symbol

Meaning

1

[Red)

t>  Rar]

(L= 2N lar]
*

(19

| {ae]

[ Lo}

A\ W

Alpha matrix of structural coefticients for
endogenous variables.

Beta matrix, B=1-A.

Gamma matrix of structural coefficients relating
exogenous to endogenous variables.

Delta matrix of structural coefficients relating
disturbance variables to endogenous variables.

Gamma star matrix, T*' = ([T:A].
Phi matrix of covariances among independent variables.

Selection matrix to select manifest dependent
variables from n*.

Selection matrix to select manifest independent
variables from £*.

Population covariance matrix for manifest variables.

Hypothetical population covariance matrix for
manifest variables according to a structural model.

Sample covariance matrix for manifest variables.

Estimated hypothetical covariance matrix for manifest
variables according to a structural model.
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Table 4.3. Sample covariances among 13 manifest variables

of the model in Figure 4.14for a sample of 300 observations.

vyl yd4 y5 y6 y7 y8 y9 yil0 yll yl2 yl13 yld x2

y3 |.99
yd | .56 1.10 ‘
y5 | .60 .63 1.07
y6 | .66 .69 .74 1.14
y7 (.43 .49 .50 .51 1.08
y8 | .37 .42 .42 .46 .64 .94
y9 | .47 .52 .55 .57 .78 .69 1.22
y10 | .35 .40 .41 .45 .61 .53 .65 .93
yll {.29 .38 .39 .44 .25 .26 .29 .22 .97
yl2 .25 .30 .31 .38 .22 .20 .26 .19 .51 1.00
yl3 |.24 .38 .32 .3 .18 .21 .26 .21 .49 .44 ,94
yld |.25 .36 .34 .39 .24 .23 .28 .20 .54 .44 .48 .91

x2 .43 .47 .50 .51 .35 .33 .40 .29 .03 -.01 -.04 -.00 .96
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{ Fig. 4.la. latent structural model
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/ Quality Overload \
€ —p Increased inspections / \ Insufficient Time -
€ —p Incressed Dependability Managerial Pressure
i BRQ «—
/ S$=T Inventory € —
Production Quotss @————— Expected State /
Quantity Anxiety
\ Gastrointestional  gee
\ Disorders
Headaches —

Fig. 4.1b. Measurement model linking latent variables to manifest indicators

Figure 4.1, 1Illustrations of a structural model and a measurement model for a latent
variable analvsis.
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Expected pl. o
Quality (1) 31-\60‘ / , /
=.7

Pfq=.70
, = 50 (3) Role Overload —=————) (4) State Anxiety

Expected P32
Quantity (2)

Fig. 4.3a. Latent structural model with path coefficients linking
latent variables.

€ e €
¢
Increased Dependability
1\ .81(.65) Insufficient Time Headaches
Expected Quality (2)\\\-\6\0\\\9 .87¢(. 75;[ V{/ .84(,7o;ru///
4’;2/’4 (3) Role Overload ——)(4) State Anxiety

Expected Quantity (1)
l 1.00(1.00)

Production Quotas

Fig. 4.3b. Latent variable model with one manifest indicator for
each latent variable.

Increased 4
Dependability (1)~\\\\;\: k////’ u(////
P43=

.51
b (3) Insufficient ——é———-—)(A) Headaches
i?.“ Time
3
Production
Quotas (2)

Fig. 4.3c. Manifest variable model with biased estimates of path
coefficients

Figure 4.3. Illustration of bias in estimates of path coefficients resulting
from measurement error in manifest variables.
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Figure 4.4. Structural model with six latent

3
variables. 5 and § 5 are exogenous variables.

’
N, and n, are endogenous variables; 51 and € 2

are disturbance variables. ‘
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Figure 4.5, A structural model for a latent variable

with four indicator variables.
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f Figure 4.6. A structural model for four perfectly

reliable indicators of a single latent variable.
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Figure 4.7. A structural model with two
exogenous variables and five endogenous

variables. Ql is a latent variable with

.

four indicators, yz, ey ys. 52 is a

manifest exogenous variable. xl is a

manifest endogenous variable caused by

51 and xy-
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Figure 4.8, A structural model in which four
manifest exogenous variables Xyr o eeer Xy
are causes of a latent variable g],which in turn

is a common cause of manifest endogenous variables
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Figure 4.10. A submodel of the model in Figure 9.
used to illustrate the assessment of the identification

of parameters. In this model S310 Q490 2570 and a.,

are overidentified parameters.
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Figure 4.11. Because arrows ''radiate'" from the common

variable n;» and the latent variables have unit variances,
the covariance between the manifest variables ¥q and y3

is given by the product 291%51%3,¢
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